Role of Wnt/β-catenin signaling pathway in epithelial-mesenchymal transition of human prostate cancer induced by hypoxia-inducible factor-1α

2007 ◽  
Vol 14 (11) ◽  
pp. 1034-1039 ◽  
Author(s):  
Yong-Guang Jiang ◽  
Yong Luo ◽  
Da-lin He ◽  
Xiang Li ◽  
Lin-lin Zhang ◽  
...  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhenming Jiang ◽  
Yuxi Zhang ◽  
Xi Chen ◽  
Pingeng Wu ◽  
Dong Chen

An amendment to this paper has been published and can be accessed via the original article.


2018 ◽  
Vol 78 (16) ◽  
pp. 4671-4679 ◽  
Author(s):  
Kimberley Kolijn ◽  
Esther I. Verhoef ◽  
Marcel Smid ◽  
René Böttcher ◽  
Guido W. Jenster ◽  
...  

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhenming Jiang ◽  
Yuxi Zhang ◽  
Xi Chen ◽  
Pingeng Wu ◽  
Dong Chen

Abstract Background Prostate cancer (PCa) is a common disease that often occurs among older men and a frequent cause of malignancy associated death in this group. microRNA (miR)-129-5p has been identified as an essential regulator with a significant role in the prognosis of PC. Therefore, this study aimed to investigate roles of miR-129-5p in PCa. Methods Microarray analysis was conducted to identify PCa-related genes. The expression of miR-129-5p and ZIC2 in PCa tissues was investigated. To understand the role of miR-129-5p and ZIC2 in PCa, DU145 cells were transfected with mimic or inhibitor of miR-129-5p, or si-ZIC2 and the expression of Wnt, β-catenin, E-cadherin, vimentin, N-cadherin, vascular endothelial growth factor (VEGF), and CD31, as well as the extent of β-catenin phosphorylation was determined. In addition, cell proliferation, migration, invasion, angiogenesis, apoptosis and tumorigenesis were detected. Results miR-129-5p was poorly expressed and ZIC2 was highly expressed in PCa tissues. Down-regulation of ZIC2 or overexpression of miR-129-5p reduced the expression of ZIC2, Wnt, β-catenin, N-cadherin, vimentin, and β-catenin phosphorylation but increased the expression of E-cadherin. Importantly, miR-129-5p overexpression significantly reduced cell migration, invasion, angiogenesis and tumorigenesis while increasing cell apoptosis. Conclusions The findings of the present study indicated that overexpression of miR-129-5p or silencing of ZIC2 could inhibit epithelial–mesenchymal transition (EMT) and angiogenesis in PCa through blockage of the Wnt/β-catenin signaling pathway.


Author(s):  
Qiang Lu ◽  
Zhe Liu ◽  
Zhuo Li ◽  
Jia Chen ◽  
Zhi Liao ◽  
...  

Tumor necrosis factor-α (TNF-α)-induced protein 8-like 2 (TNFAIP8L2, TIPE2) is involved in the invasion and metastasis of human tumors. However, the functional role of TIPE2 in prostate cancer remains unclear. In the present study, we explored the role of TIPE2 in prostate cancer and cancer progression including the molecular mechanism that drives TIPE2-mediated oncogenesis. Our results showed that TIPE2 was lowly expressed in human prostate cancer tissues and cell lines. In addition, restored TIPE2 obviously inhibits proliferation in prostate cancer cells. TIPE2 overexpression also suppresses the epithelial‐mesenchymal transition (EMT) process and migration/invasion in prostate cancer cells. Mechanistically, TIPE2 overexpression obviously inhibits the phosphorylation levels of phosphatidylinositol 3-kinase (PI3K) and Akt in prostate cancer cells. In conclusion, for the first time we demonstrated that TIPE2 overexpression may suppress proliferation, migration, and invasion in prostate cancer cells by inhibiting the PI3K/Akt signaling pathway. Therefore, TIPE2 might serve as a potential therapeutic target for human prostate cancer.


Sign in / Sign up

Export Citation Format

Share Document