scholarly journals Correction to: Inactivation of the Wnt/β-catenin signaling pathway underlies inhibitory role of microRNA-129-5p in epithelial–mesenchymal transition and angiogenesis of prostate cancer by targeting ZIC2

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhenming Jiang ◽  
Yuxi Zhang ◽  
Xi Chen ◽  
Pingeng Wu ◽  
Dong Chen

An amendment to this paper has been published and can be accessed via the original article.

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhenming Jiang ◽  
Yuxi Zhang ◽  
Xi Chen ◽  
Pingeng Wu ◽  
Dong Chen

Abstract Background Prostate cancer (PCa) is a common disease that often occurs among older men and a frequent cause of malignancy associated death in this group. microRNA (miR)-129-5p has been identified as an essential regulator with a significant role in the prognosis of PC. Therefore, this study aimed to investigate roles of miR-129-5p in PCa. Methods Microarray analysis was conducted to identify PCa-related genes. The expression of miR-129-5p and ZIC2 in PCa tissues was investigated. To understand the role of miR-129-5p and ZIC2 in PCa, DU145 cells were transfected with mimic or inhibitor of miR-129-5p, or si-ZIC2 and the expression of Wnt, β-catenin, E-cadherin, vimentin, N-cadherin, vascular endothelial growth factor (VEGF), and CD31, as well as the extent of β-catenin phosphorylation was determined. In addition, cell proliferation, migration, invasion, angiogenesis, apoptosis and tumorigenesis were detected. Results miR-129-5p was poorly expressed and ZIC2 was highly expressed in PCa tissues. Down-regulation of ZIC2 or overexpression of miR-129-5p reduced the expression of ZIC2, Wnt, β-catenin, N-cadherin, vimentin, and β-catenin phosphorylation but increased the expression of E-cadherin. Importantly, miR-129-5p overexpression significantly reduced cell migration, invasion, angiogenesis and tumorigenesis while increasing cell apoptosis. Conclusions The findings of the present study indicated that overexpression of miR-129-5p or silencing of ZIC2 could inhibit epithelial–mesenchymal transition (EMT) and angiogenesis in PCa through blockage of the Wnt/β-catenin signaling pathway.


2018 ◽  
Vol 8 (1) ◽  
pp. 62 ◽  
Author(s):  
Julianna Maria Santos ◽  
Fazle Hussain

Background: Reduced levels of magnesium can cause several diseases and increase cancer risk. Motivated by magnesium chloride’s (MgCl2) non-toxicity, physiological importance, and beneficial clinical applications, we studied its action mechanism and possible mechanical, molecular, and physiological effects in prostate cancer with different metastatic potentials.Methods: We examined the effects of MgCl2, after 24 and 48 hours, on apoptosis, cell migration, expression of epithelial mesenchymal transition (EMT) markers, and V-H+-ATPase, myosin II (NMII) and the transcription factor NF Kappa B (NFkB) expressions.Results: MgCl2 induces apoptosis, and significantly decreases migration speed in cancer cells with different metastatic potentials.  MgCl2 reduces the expression of V-H+-ATPase and myosin II that facilitates invasion and metastasis, suppresses the expression of vimentin and increases expression of E-cadherin, suggesting a role of MgCl2 in reversing the EMT. MgCl2 also significantly increases the chromatin condensation and decreases NFkB expression.Conclusions: These results suggest a promising preventive and therapeutic role of MgCl2 for prostate cancer. Further studies should explore extending MgCl2 therapy to in vivo studies and other cancer types.Keywords: Magnesium chloride, prostate cancer, migration speed, V-H+-ATPase, and EMT.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2795
Author(s):  
Sofia Papanikolaou ◽  
Aikaterini Vourda ◽  
Spyros Syggelos ◽  
Kostis Gyftopoulos

Prostate cancer, the second most common malignancy in men, is characterized by high heterogeneity that poses several therapeutic challenges. Epithelial–mesenchymal transition (EMT) is a dynamic, reversible cellular process which is essential in normal embryonic morphogenesis and wound healing. However, the cellular changes that are induced by EMT suggest that it may also play a central role in tumor progression, invasion, metastasis, and resistance to current therapeutic options. These changes include enhanced motility and loss of cell–cell adhesion that form a more aggressive cellular phenotype. Moreover, the reverse process (MET) is a necessary element of the metastatic tumor process. It is highly probable that this cell plasticity reflects a hybrid state between epithelial and mesenchymal status. In this review, we describe the underlying key mechanisms of the EMT-induced phenotype modulation that contribute to prostate tumor aggressiveness and cancer therapy resistance, in an effort to provide a framework of this complex cellular process.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Yigang Zeng ◽  
Jiajia Sun ◽  
Juan Bao ◽  
Tongyu Zhu

Abstract Background Recent studies have confirmed the integration of the BK polyomavirus (BKPyV) gene into the cellular genome of urothelial carcinomas in transplant recipients, further confirming the correlation between BKPyV and urothelial carcinomas after transplantation. However, the role BKPyV infections play in the biological function of bladder cancer remains unclear. Methods We developed a BKPyV-infected bladder cancer cell model and a mice tumor model to discuss the role of BKPyV infections. Results Our research proves that BKPyV infections promote the proliferation, invasion and migration of bladder cancer cells, while the activation of β-catenin signaling pathway is one of its mediation mechanisms. Conclusions We first described BKPyV infection promotes the proliferation, invasion and migration of bladder cancer. We verified the role of β-catenin signaling pathway and Epithelial-Mesenchymal Transition effect in BKPyV-infected bladder cancer. These results provide meaningful information towards the diagnosis and treatment of clinical bladder cancer.


Cancers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 434 ◽  
Author(s):  
Wenjuan Mei ◽  
Xiaozeng Lin ◽  
Anil Kapoor ◽  
Yan Gu ◽  
Kuncheng Zhao ◽  
...  

Research in the last decade has clearly revealed a critical role of prostate cancer stem cells (PCSCs) in prostate cancer (PC). Prostate stem cells (PSCs) reside in both basal and luminal layers, and are the target cells of oncogenic transformation, suggesting a role of PCSCs in PC initiation. Mutations in PTEN, TP53, and RB1 commonly occur in PC, particularly in metastasis and castration-resistant PC. The loss of PTEN together with Ras activation induces partial epithelial–mesenchymal transition (EMT), which is a major mechanism that confers plasticity to cancer stem cells (CSCs) and PCSCs, which contributes to metastasis. While PTEN inactivation leads to PC, it is not sufficient for metastasis, the loss of PTEN concurrently with the inactivation of both TP53 and RB1 empower lineage plasticity in PC cells, which substantially promotes PC metastasis and the conversion to PC adenocarcinoma to neuroendocrine PC (NEPC), demonstrating the essential function of TP53 and RB1 in the suppression of PCSCs. TP53 and RB1 suppress lineage plasticity through the inhibition of SOX2 expression. In this review, we will discuss the current evidence supporting a major role of PCSCs in PC initiation and metastasis, as well as the underlying mechanisms regulating PCSCs. These discussions will be developed along with the cancer stem cell (CSC) knowledge in other cancer types.


Sign in / Sign up

Export Citation Format

Share Document