ME1 and GE1: Basic Helix - Loop - Helix Transcription Factors Expressed at High Levels in the Developing Nervous System and in Morphogenetically Active Regions

1993 ◽  
Vol 5 (4) ◽  
pp. 311-318 ◽  
Author(s):  
T. Neuman ◽  
A. Keen ◽  
E. Knapik ◽  
D. Shain ◽  
M. Ross ◽  
...  
Development ◽  
1994 ◽  
Vol 120 (4) ◽  
pp. 769-783 ◽  
Author(s):  
C.L. Jasoni ◽  
M.B. Walker ◽  
M.D. Morris ◽  
T.A. Reh

We have identified a basic helix-loop-helix encoding cDNA from embryonic chicken retina which shares sequence similarity with the achaete-scute family of genes of Drosophila. The deduced amino acid sequence of this chicken achaete-scute homolog (CASH-1) is identical, over the region encoding the basic helix-loop-helix domain, to the recently identified mammalian achaete-scute homolog (MASH-1) and to the Xenopus homolog (XASH1), and 70% identical, over the same region, to Drosophila achaete-scute complex members. The expression of CASH-1 is restricted to subsets of neuronal progenitor cells in the developing chicken nervous system, similar in distribution to that reported for MASH-1 and XASH1. In addition, in situ localization in the retina reveals a dynamic character of expression of the gene in a particular region of the CNS, and suggests that the expression of CASH-1 may be important in defining a particular stage in the progenitor cell necessary for the differentiation of particular neuronal phenotypes.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Karen A. Hudson ◽  
Matthew E. Hudson

The complete genome sequence of soybean allows an unprecedented opportunity for the discovery of the genes controlling important traits. In particular, the potential functions of regulatory genes are a priority for analysis. The basic helix-loop-helix (bHLH) family of transcription factors is known to be involved in controlling a wide range of systems critical for crop adaptation and quality, including photosynthesis, light signalling, pigment biosynthesis, and seed pod development. Using a hidden Markov model search algorithm, 319 genes with basic helix-loop-helix transcription factor domains were identified within the soybean genome sequence. These were classified with respect to their predicted DNA binding potential, intron/exon structure, and the phylogeny of the bHLH domain. Evidence is presented that the vast majority (281) of these 319 soybean bHLH genes are expressed at the mRNA level. Of these soybean bHLH genes, 67% were found to exist in two or more homeologous copies. This dataset provides a framework for future studies on bHLH gene function in soybean. The challenge for future research remains to define functions for the bHLH factors encoded in the soybean genome, which may allow greater flexibility for genetic selection of growth and environmental adaptation in this widely grown crop.


2009 ◽  
Vol 20 (4) ◽  
pp. 236-246 ◽  
Author(s):  
X. Zheng ◽  
Y. Wang ◽  
Q. Yao ◽  
Z. Yang ◽  
K. Chen

Development ◽  
1997 ◽  
Vol 124 (17) ◽  
pp. 3263-3272 ◽  
Author(s):  
T. Roztocil ◽  
L. Matter-Sadzinski ◽  
C. Alliod ◽  
M. Ballivet ◽  
J.M. Matter

Genes encoding transcription factors of the helix-loop-helix family are essential for the development of the nervous system in Drosophila and vertebrates. Screens of an embryonic chick neural cDNA library have yielded NeuroM, a novel neural-specific helix-loop-helix transcription factor related to the Drosophila proneural gene atonal. The NeuroM protein most closely resembles the vertebrate NeuroD and Nex1/MATH2 factors, and is capable of transactivating an E-box promoter in vivo. In situ hybridization studies have been conducted, in conjunction with pulse-labeling of S-phase nuclei, to compare NeuroM to NeuroD expression in the developing nervous system. In spinal cord and optic tectum, NeuroM expression precedes that of NeuroD. It is transient and restricted to cells lining the ventricular zone that have ceased proliferating but have not yet begun to migrate into the outer layers. In retina, NeuroM is also transiently expressed in cells as they withdraw from the mitotic cycle, but persists in horizontal and bipolar neurons until full differentiation, assuming an expression pattern exactly complementary to NeuroD. In the peripheral nervous system, NeuroM expression closely follows cell proliferation, suggesting that it intervenes at a similar developmental juncture in all parts of the nervous system. We propose that availability of the NeuroM helix-loop-helix factor defines a new stage in neurogenesis, at the transition between undifferentiated, premigratory and differentiating, migratory neural precursors.


Sign in / Sign up

Export Citation Format

Share Document