In situ probing of Xylella fastidiosa in honeydew of a xylem sap-feeding insect using 16S rRNA-targeted fluorescent oligonucleotides

2006 ◽  
Vol 8 (4) ◽  
pp. 747-754 ◽  
Author(s):  
Jorge L. M. Rodrigues ◽  
Maria E. Silva-Stenico ◽  
Adriane N. de Souza ◽  
Joao R. S. Lopes ◽  
Siu M. Tsai
Microbiology ◽  
2021 ◽  
Vol 167 (10) ◽  
Author(s):  
Lindsey P. Burbank ◽  
M. Caroline Roper

Xylella fastidiosa is a vector-borne plant vascular pathogen that has caused devastating disease outbreaks in diverse agricultural crops worldwide. A major global quarantine pathogen, X. fastidiosa can infect hundreds of plant species and can be transmitted by many different xylem sap-feeding insects. Several decades of research have revealed a complex lifestyle dependent on adaptation to the xylem and insect environments and interactions with host plant tissues.


Insects ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 324 ◽  
Author(s):  
Vincenzo Cavalieri ◽  
Giuseppe Altamura ◽  
Giulio Fumarola ◽  
Michele di Carolo ◽  
Maria Saponari ◽  
...  

Diseases associated with Xylella fastidiosa have been described mostly in North and South America. However, during the last five years, widespread X. fastidiosa infections have been reported in a constrained area of the Apulia region (southern Italy), in olives trees suffering a severe disease, denoted as Olive Quick Decline Syndrome (OQDS). Because many xylem sap-feeding insects can function as vectors for the transmission of this exotic pathogen in EU, several research programs are ongoing to assess the role of candidate vectors in the spread of the infections. Initial investigations identified Philaenus spumarius (L.) as the predominant vector species in the olive orchards affected by the OQDS. Additional experiments have been carried out during 2016 and 2017 to assess the role of other species. More specifically, adults of the spittlebugs Philaenus italosignus Drosopolous and Remane, Neophilaenus campestris (Fallen) and of the planthopper Latilica tunetana (Matsumura) (Issidae) have been tested in transmission experiments to assess their ability to acquire the bacterium from infected olives and to infect different susceptible hosts (olives, almond, myrtle –leaf milkwort, periwinkle). Acquisition rates determined by testing individual insects in quantitative PCR assays, ranging from 5.6% in N. campestris to 22.2% in P. italosignus, whereas no acquisition was recorded for L. tunetana. Successful transmissions were detected in the recipient plants exposed to P. italosignus and N. campestris, whereas no trasmissions occurred with L. tunetana. The known vector Philaenus spumarius has been included in all the experiments for validation. The systematic surveys conducted in 2016 and 2017 provided further evidence on the population dynamics and seasonal abundance of the spittlebug populations in the olive groves.


1999 ◽  
Vol 89 (1) ◽  
pp. 53-58 ◽  
Author(s):  
A. H. Purcell ◽  
S. R. Saunders ◽  
M. Hendson ◽  
M. E. Grebus ◽  
M. J. Henry

A lethal leaf scorch disease of oleander (Nerium oleander) appeared in southern California in 1993. A bacterium, Xylella fastidiosa, was detected by culturing, enzyme-linked immunoassay, and polymerase chain reaction in most symptomatic plants but not in symptomless plants or negative controls. Inoculating oleanders mechanically with X. fastidiosa cultures from diseased oleanders caused oleander leaf scorch (OLS) disease. The bacterium was reisolated from inoculated plants that became diseased. Three species of xylem sap-feeding leafhoppers transmitted the bacterium from oleander to oleander. The bacterium multiplied, moved systemically, and caused wilting in Madagascar periwinkle (Catharanthus rosea) and leaf scorch in periwinkle (Vinca major) in a greenhouse after inoculation with needle puncture. No bacterium was reisolated from grapevine (Vitis vinifera), peach (Prunus persica), olive (Olea europaea), California blackberry (Rubus ursinus), or valley oak (Quercus lobata) mechanically inoculated with OLS strains of X. fastidiosa. A 500-bp sequence of the 16S-23S ribosomal intergenic region of oleander strains showed 99.2% identity with Pierce's disease strains, 98.4% identity with oak leaf scorch strains, and 98.6% identity with phony peach, plum leaf scald, and almond leaf scorch strains.


2005 ◽  
Vol 71 (12) ◽  
pp. 8802-8810 ◽  
Author(s):  
Nancy A. Moran ◽  
Phat Tran ◽  
Nicole M. Gerardo

ABSTRACT Several insect groups have obligate, vertically transmitted bacterial symbionts that provision hosts with nutrients that are limiting in the diet. Some of these bacteria have been shown to descend from ancient infections. Here we show that the large group of related insects including cicadas, leafhoppers, treehoppers, spittlebugs, and planthoppers host a distinct clade of bacterial symbionts. This newly described symbiont lineage belongs to the phylum Bacteroidetes. Analyses of 16S rRNA genes indicate that the symbiont phylogeny is completely congruent with the phylogeny of insect hosts as currently known. These results support the ancient acquisition of a symbiont by a shared ancestor of these insects, dating the original infection to at least 260 million years ago. As visualized in a species of spittlebug (Cercopoidea) and in a species of sharpshooter (Cicadellinae), the symbionts have extraordinarily large cells with an elongate shape, often more than 30 μm in length; in situ hybridizations verify that these correspond to the phylum Bacteroidetes. “Candidatus Sulcia muelleri” is proposed as the name of the new symbiont.


2020 ◽  
Vol 120 ◽  
pp. 103995 ◽  
Author(s):  
Emanuele Ranieri ◽  
Gianluca Zitti ◽  
Paola Riolo ◽  
Nunzio Isidoro ◽  
Sara Ruschioni ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Despoina Ev. Kapantaidaki ◽  
Spyridon Antonatos ◽  
Vasiliki Evangelou ◽  
Dimitrios P. Papachristos ◽  
Panagiotis Milonas

AbstractThe plant-pathogenic bacterium Xylella fastidiosa which causes significant diseases to various plant species worldwide, is exclusively transmitted by xylem sap-feeding insects. Given the fact that X. fastidiosa poses a serious potential threat for olive cultivation in Greece, the main aim of this study was to investigate the genetic variation of Greek populations of three spittlebug species (Philaenus spumarius, P. signatus and Neophilaenus campestris), by examining the molecular markers Cytochrome Oxidase I, cytochrome b and Internal Transcribed Spacer. Moreover, the infection status of the secondary endosymbionts Wolbachia, Arsenophonus, Hamiltonella, Cardinium and Rickettsia, among these populations, was determined. According to the results, the ITS2 region was the less polymorphic, while the analyzed fragments of COI and cytb genes, displayed high genetic diversity. The phylogenetic analysis placed the Greek populations of P. spumarius into the previously obtained Southwest clade in Europe. The analysis of the bacterial diversity revealed a diverse infection status. Rickettsia was the most predominant endosymbiont while Cardinium was totally absent from all examined populations. Philaenus spumarius harbored Rickettsia, Arsenophonus, Hamiltonella and Wolbachia, N. campestris carried Rickettsia, Hamiltonella and Wolbachia while P. signatus was infected only by Rickettsia. The results of this study will provide an important knowledge resource for understanding the population dynamics of vectors of X. fastidiosa with a view to formulate effective management strategies towards the bacterium.


2005 ◽  
Vol 71 (10) ◽  
pp. 6308-6318 ◽  
Author(s):  
Helen A. Vrionis ◽  
Robert T. Anderson ◽  
Irene Ortiz-Bernad ◽  
Kathleen R. O'Neill ◽  
Charles T. Resch ◽  
...  

ABSTRACT The geochemistry and microbiology of a uranium-contaminated subsurface environment that had undergone two seasons of acetate addition to stimulate microbial U(VI) reduction was examined. There were distinct horizontal and vertical geochemical gradients that could be attributed in large part to the manner in which acetate was distributed in the aquifer, with more reduction of Fe(III) and sulfate occurring at greater depths and closer to the point of acetate injection. Clone libraries of 16S rRNA genes derived from sediments and groundwater indicated an enrichment of sulfate-reducing bacteria in the order Desulfobacterales in sediment and groundwater samples. These samples were collected nearest the injection gallery where microbially reducible Fe(III) oxides were highly depleted, groundwater sulfate concentrations were low, and increases in acid volatile sulfide were observed in the sediment. Further down-gradient, metal-reducing conditions were present as indicated by intermediate Fe(II)/Fe(total) ratios, lower acid volatile sulfide values, and increased abundance of 16S rRNA gene sequences belonging to the dissimilatory Fe(III)- and U(VI)-reducing family Geobacteraceae. Maximal Fe(III) and U(VI) reduction correlated with maximal recovery of Geobacteraceae 16S rRNA gene sequences in both groundwater and sediment; however, the sites at which these maxima occurred were spatially separated within the aquifer. The substantial microbial and geochemical heterogeneity at this site demonstrates that attempts should be made to deliver acetate in a more uniform manner and that closely spaced sampling intervals, horizontally and vertically, in both sediment and groundwater are necessary in order to obtain a more in-depth understanding of microbial processes and the relative contribution of attached and planktonic populations to in situ uranium bioremediation.


2001 ◽  
Vol 67 (1) ◽  
pp. 142-147 ◽  
Author(s):  
Henrik Stender ◽  
Adam J. Broomer ◽  
Kenneth Oliveira ◽  
Heather Perry-O'Keefe ◽  
Jens J. Hyldig-Nielsen ◽  
...  

ABSTRACT A new chemiluminescent in situ hybridization (CISH) method provides simultaneous detection, identification, and enumeration of culturableEscherichia coli cells in 100 ml of municipal water within one working day. Following filtration and 5 h of growth on tryptic soy agar at 35°C, individual microcolonies of E. coliwere detected directly on a 47-mm-diameter membrane filter using soybean peroxidase-labeled peptide nucleic acid (PNA) probes targeting a species-specific sequence in E. coli 16S rRNA. Within each microcolony, hybridized, peroxidase-labeled PNA probe and chemiluminescent substrate generated light which was subsequently captured on film. Thus, each spot of light represented one microcolony of E. coli. Following probe selection based on 16S ribosomal DNA (rDNA) sequence alignments and sample matrix interference, the sensitivity and specificity of the probe Eco16S07C were determined by dot hybridization to RNA of eight bacterial species. Only the rRNA of E. coli and Pseudomonas aeruginosa were detected by Eco16S07C with the latter mismatch hybridization being eliminated by a PNA blocker probe targetingP. aeruginosa 16S rRNA. The sensitivity and specificity for the detection of E. coli by PNA CISH were then determined using 8 E. coli strains and 17 other bacterial species, including closely related species. No bacterial strains other thanE. coli and Shigella spp. were detected, which is in accordance with 16S rDNA sequence information. Furthermore, the enumeration of microcolonies of E. coli represented by spots of light correlated 92 to 95% with visible colonies following overnight incubation. PNA CISH employs traditional membrane filtration and culturing techniques while providing the added sensitivity and specificity of PNA probes in order to yield faster and more definitive results.


Plant Disease ◽  
1998 ◽  
Vol 82 (6) ◽  
pp. 712-712 ◽  
Author(s):  
B. Ueno ◽  
C. K. Funada ◽  
M. A. Yorinori ◽  
R. P. Leite

In 1998, plants of periwinkle (Catharanthus roseus L.) showing small leaves, short internodes, and dieback symptoms were observed in a garden at the Instituto Agronomico do Parana (IAPAR), Londrina, PR, Brazil. Stems of these plants were cut into short sections and the sap extracted from the tissue by squeezing with pliers. The sap was blotted onto a glass slide and examined for the presence of bacteria by light microscopy (×400). Microscopy observations revealed the presence of a large number of slender, rod-shaped bacterial cells. The bacteria present in the stems of periwinkle were isolated on buffered cysteine-yeast extract (BCYE) and periwinkle wilt (PW) agar media. Stems were disinfected in 70% alcohol and cut into short sections, and the sap extracted as described above. The sap was blotted directly onto the media and the plates were incubated at 28°C. Typical colonies of Xylella fastidiosa were observed 10 days after isolation on both media. Indirect immunofluorescence tests with antibody specific to X. fastidiosa and anti-IgG conjugated with tetrametylrhodamine isothiocyanate (TRITC) were carried out with xylem sap of periwinkle stem and the isolated bacteria. In both cases, immunofluorescence tests were positive for X. fastidiosa. These results confirm that periwinkle plants were infected with X. fastidiosa. This is the first report of the association of X. fastidiosa with periwinkle plants in Brazil. However, the symptoms observed for the X. fastidiosa-infected periwinkle plants differed from those described previously in the U.S. (1): those symptoms consisted of marginal chlorosis and occasional vein clearing of leaves and wilting of the plants. Reference: (1) R. E. McCoy et al. Plant Dis. Rep. 62:1022, 1978.


Sign in / Sign up

Export Citation Format

Share Document