Preface: the third workshop of the i.a.g./a.i.g. sedibud programme – sediment budgets in cold environments: sediment fluxes and sediment budgets in changing high‐latitude and high‐altitude cold environments

2010 ◽  
Vol 92 (2) ◽  
pp. 149-150
Author(s):  
Achim A. Beylich ◽  
Scott F. Lamoureux
Eos ◽  
2007 ◽  
Vol 88 (52) ◽  
pp. 580 ◽  
Author(s):  
Scott Lamoureux ◽  
Achim Beylich ◽  
Armelle Decaulne

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 768
Author(s):  
Jerónimo Vázquez-Ramírez ◽  
Susanna E. Venn

The early life-history stages of plants, such as germination and seedling establishment, depend on favorable environmental conditions. Changes in the environment at high altitude and high latitude regions, as a consequence of climate change, will significantly affect these life stages and may have profound effects on species recruitment and survival. Here, we synthesize the current knowledge of climate change effects on treeline, tundra, and alpine plants’ early life-history stages. We systematically searched the available literature on this subject up until February 2020 and recovered 835 potential articles that matched our search terms. From these, we found 39 studies that matched our selection criteria. We characterized the studies within our review and performed a qualitative and quantitative analysis of the extracted meta-data regarding the climatic effects likely to change in these regions, including projected warming, early snowmelt, changes in precipitation, nutrient availability and their effects on seed maturation, seed dormancy, germination, seedling emergence and seedling establishment. Although the studies showed high variability in their methods and studied species, the qualitative and quantitative analysis of the extracted data allowed us to detect existing patterns and knowledge gaps. For example, warming temperatures seemed to favor all studied life stages except seedling establishment, a decrease in precipitation had a strong negative effect on seed stages and, surprisingly, early snowmelt had a neutral effect on seed dormancy and germination but a positive effect on seedling establishment. For some of the studied life stages, data within the literature were too limited to identify a precise effect. There is still a need for investigations that increase our understanding of the climate change impacts on high altitude and high latitude plants’ reproductive processes, as this is crucial for plant conservation and evidence-based management of these environments. Finally, we make recommendations for further research based on the identified knowledge gaps.


2011 ◽  
Vol 14 (1-2) ◽  
pp. 88-115 ◽  
Author(s):  
Kevin Walsh ◽  
Florence Mocci

The assessment of the important changes that occurred in late third and second millennia societies across Europe often emphasizes changes in technology and the emergence of associated objects and art forms, changes in burial rites, and developments in economic practices. Notions relating to the evolution of homo economicus dominate many of the discourses, and the evidence for increased long-distance trade / contact across Europe is used to bolster this assessment. These themes are underpinned by an obsession with ever-refined chrono-typological phases. In an attempt to present a more socially embedded perspective, this paper considers the changes that occurred in the uses of the high-altitude, sub-alpine, and alpine zones in the southern French Alps during the third and second millennia BC. From c. 2500 BC onwards, there was a fundamental change in the use of and engagement with this landscape. The first substantial stone-built pastoral structures at high altitude (2000 m and above), appear at this time. This departure in the use and structuring of the alpine space would have included concomitant changes in the nature of mobility, notions of territory, and memories associated with this area.


Author(s):  
Sulayman Aslan Lyons ◽  
Kevin B Tate ◽  
Kenneth Collins Welch ◽  
Grant B. McClelland

When at their maximum thermogenic capacity (cold-induced V̇O2max), small endotherms reach levels of aerobic metabolism as high, or even higher, than running V̇O2max. How these high rates of thermogenesis are supported by substrate oxidation is currently unclear. The appropriate utilization of metabolic fuels that could sustain thermogenesis over extended periods may be important for survival in cold environments, like high altitude. Previous studies show that high capacities for lipid use in high-altitude deer mice may have evolved in concert with greater thermogenic capacities. The purpose of this study was to determine how lipid utilization at both moderate and maximal thermogenic intensities may differ in high- and low- altitude deer mice, and strictly low-altitude white-footed mice. We also examined the phenotypic plasticity of lipid use after acclimation to cold hypoxia (CH), conditions simulating high altitude. We found that lipids were the primary fuel supporting both moderate and maximal rates of thermogenesis in both species of mice. Lipid oxidation increased 3-fold in mice from 30oC to 0oC, consistent with increases in oxidation of [13C]-palmitic acid. CH acclimation led to an increase in [13C]-palmitic acid oxidation at 30oC but did not affect total lipid oxidation. Lipid oxidation rates at cold-induced V̇O2max were two- to four-fold those at 0oC and increased further after CH acclimation, especially in high-altitude deer mice. These are the highest mass-specific lipid oxidation rates observed in any land mammal. Uncovering the mechanisms that allow for these high rates of oxidation will aid our understanding of the regulation of lipid metabolism.


2021 ◽  
Author(s):  
Dongfeng Li ◽  
Xixi Lu ◽  
Ting Zhang

<p>Sediment flux in cold environments is a crucial proxy to link glacial, periglacial, and fluvial systems and highly relevant to hydropower operation, water quality, and the riverine carbon cycle. However, the long-term impacts of climate change and multiple human activities on sediment flux changes in cold environments remain insufficiently investigated due to the lack of monitoring and the complexity of the sediment cascade. Here we examine the multi-decadal changes in the in-situ observed fluvial sediment fluxes from two types of basins, namely, pristine basins and disturbed basins, in the Tibetan Plateau and its margins. The results show that the fluvial sediment fluxes in the pristine Tuotuohe headwater have substantially increased over the past three decades (i.e., a net increase of 135% from 1985–1997 to 1998–2017) due to the warming and wetting climate. We also quantify the relative impacts of air temperature and precipitation on the increases in the sediment fluxes with a novel attribution approach and finds that climate warming and intensified glacier-snow-permafrost melting is the primary cause of the increased sediment fluxes in the pristine cold environment (Tuotuohe headwater), with precipitation increase and its associated pluvial processes being the secondary driver. By contrast, the sediment fluxes in the downstream disturbed Jinsha River (southeastern margin of the Tibetan Plateau) exhibit a net increase of 42% from 1966-1984 to 1985-2010 mainly due to human activities such as deforestation and mineral extraction (contribution of 82%) and secondly because of climate change (contribution of 18%). Then the sediment fluxes dropped by 76% during the period of 2011-2015 because of the operations of six cascade reservoirs since 2010. In an expected warming and wetting climate for the region, we predict that the sediment fluxes in the pristine headwaters of the Tibetan Plateau will continue to increase throughout the 21st century, but the rising sediment fluxes from the Tibetan Plateau would be mostly trapped in its marginal reservoirs.</p><p>Overall, this work has provided the sedimentary evidence of modern climate change through robust observational sediment flux data over multiple decades. It demonstrates that sediment fluxes in pristine cold environments are more sensitive to air temperature and thermal-driven geomorphic processes than to precipitation and pluvial-driven processes. It also provides a guide to assess the relative impacts of human activities and climate change on fluvial sediment flux changes and has significant implications for water resources stakeholders to better design and manage the hydropower dams in a changing climate. Such findings may also have implications for other cold environments such as the Arctic, Antarctic, and other high mountainous basins.</p><p>Furthermore, this research is under the project of "Water and Sediment Fluxes Response to Climate Change in the Headwater Rivers of Asian Highlands" (supported by the IPCC and the Cuomo Foundation) and the project of "Sediment Load Responses to Climate Change in High Mountain Asia" (supported by the Ministry of Education of Singapore). Part of the results are also published in Li et al., 2018 Geomorphology, Li et al., 2020 Geophysical Research Letters, and Li et al., 2021 Water Resources Research.</p>


Author(s):  
Patrick Luiz Sullivan De Oliveira

Following the balloon's invention in 1783, the French greeted the technology with enthusiasm, speculating extensively about its potential scientific and practical applications. However, the lack of progress in navigating against the winds discredited ballooning, and in the following decades it became the domain of spectacular forms of entertainment and of swindlers trying to defraud public subscriptions. All of this changed after the 1870–1871 Franco-Prussian War, during which balloons were used to breach the siege of Paris. This essay explores how the aeronautical community, led by the recently established Société Française de Navigation Aérienne, mobilized the memory of the war to transform the balloon into a symbol of a heroic republican science. Paramount in that process was the Zénith 's 1875 high-altitude ascent that killed two aeronauts—Joseph Crocé-Spinelli and Théodore Sivel. The tragedy reverberated beyond France's scientific community, and through popular acclaim the two aeronauts became the Third Republic's first scientific martyrs, anticipating the eventual apotheoses of figures like Claude Bernard and Louis Pasteur. The ballooning revival in the last third of the century helped strengthen the association between France and aeronautics, thus setting the stage for the country to acquire a central position in the field by the early twentieth century.


2012 ◽  
Vol 56 (1) ◽  
pp. 3-8 ◽  
Author(s):  
Achim A. Beylich ◽  
Armelle Decaulne ◽  
John C. Dixon ◽  
Scott F. Lamoureux ◽  
John F. Orwin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document