Processing of auditory stimuli during auditory and visual attention as revealed by event-related potentials

1994 ◽  
Vol 31 (5) ◽  
pp. 469-479 ◽  
Author(s):  
KIMMO ALHO ◽  
DAVID L. WOODS ◽  
ALAIN ALGAZI
2002 ◽  
Vol 39 (1) ◽  
pp. 49-63 ◽  
Author(s):  
Linda J. Metzger ◽  
Margaret A. Carson ◽  
Lynn A. Paulus ◽  
Natasha B. Lasko ◽  
Stephen R. Paige ◽  
...  

i-Perception ◽  
10.1068/ic785 ◽  
2011 ◽  
Vol 2 (8) ◽  
pp. 785-785
Author(s):  
Masami Hashimoto ◽  
Makoto Chishima ◽  
Kazunori Itoh ◽  
Mizue Kayama ◽  
Makoto Otani ◽  
...  

1990 ◽  
Vol 13 (2) ◽  
pp. 201-233 ◽  
Author(s):  
Risto Näätänen

AbstractThis article examines the role of attention and automaticity in auditory processing as revealed by event-related potential (ERP) research. An ERP component called the mismatch negativity, generated by the brain's automatic response to changes in repetitive auditory input, reveals that physical features of auditory stimuli are fully processed whether or not they are attended. It also suggests that there exist precise neuronal representations of the physical features of recent auditory stimuli, perhaps the traces underlying acoustic sensory (“echoic”) memory. A mechanism of passive attention switching in response to changes in repetitive input is also implicated.Conscious perception of discrete acoustic stimuli might be mediated by some of the mechanisms underlying another ERP component (NI), one sensitive to stimulus onset and offset. Frequent passive attentional shifts might accountforthe effect cognitive psychologists describe as “the breakthrough of the unattended” (Broadbent 1982), that is, that even unattended stimuli may be semantically processed, without assuming automatic semantic processing or late selection in selective attention.The processing negativity supports the early-selection theory and may arise from a mechanism for selectively attending to stimuli defined by certain features. This stimulus selection occurs in the form ofa matching process in which each input is compared with the “attentional trace,” a voluntarily maintained representation of the task-relevant features of the stimulus to be attended. The attentional mechanism described might underlie the stimulus-set mode of attention proposed by Broadbent. Finally, a model of automatic and attentional processing in audition is proposed that is based mainly on the aforementioned ERP components and some other physiological measures.


2004 ◽  
Vol 26 (2) ◽  
pp. 317-337 ◽  
Author(s):  
Tsung-Min Hung ◽  
Thomas W. Spalding ◽  
D. Laine Santa Maria ◽  
Bradley D. Hatfield

Motor readiness, visual attention, and reaction time (RT) were assessed in 15 elite table tennis players (TTP) and 15 controls (C) during Posner’s cued attention task. Lateralized readiness potentials (LRP) were derived from contingent negative variation (CNV) at Sites C3 and C4, elicited between presentation of directional cueing (S1) and the appearance of the imperative stimulus (S2), to assess preparation for hand movement while P1 and N1 component amplitudes were derived from occipital event-related potentials (ERPs) in response to S2 to assess visual attention. Both groups had faster RT to validly cued stimuli and slower RT to invalidly cued stimuli relative to the RT to neutral stimuli that were not preceded by directional cueing, but the groups did not differ in attention benefit or cost. However, TTP did have faster RT to all imperative stimuli; they maintained superior reactivity to S2 whether preceded by valid, invalid, or neutral warning cues. Although both groups generated LRP in response to the directional cues, TTP generated larger LRP to prepare the corresponding hand for movement to the side of the cued location. TTP also had an inverse cueing effect for N1 amplitude (i.e., amplitude of N1 to the invalid cue > amplitude of N1 to the valid cue) while C visually attended to the expected and unexpected locations equally. It appears that TTP preserve superior reactivity to stimuli of uncertain location by employing a compensatory strategy to prepare their motor response to an event associated with high probability, while simultaneously devoting more visual attention to an upcoming event of lower probability.


2011 ◽  
Vol 23 (10) ◽  
pp. 2650-2664 ◽  
Author(s):  
Nancy B. Carlisle ◽  
Geoffrey F. Woodman

Biased competition theory proposes that representations in working memory drive visual attention to select similar inputs. However, behavioral tests of this hypothesis have led to mixed results. These inconsistent findings could be due to the inability of behavioral measures to reliably detect the early, automatic effects on attentional deployment that the memory representations exert. Alternatively, executive mechanisms may govern how working memory representations influence attention based on higher-level goals. In the present study, we tested these hypotheses using the N2pc component of participants' event-related potentials to directly measure the early deployments of covert attention. Participants searched for a target in an array that sometimes contained a memory-matching distractor. In Experiments 1 to 3, we manipulated the difficulty of the target discrimination and the proximity of distractors, but consistently observed that covert attention was deployed to the search targets and not the memory-matching distractors. In Experiment 4, we showed that when participants' goal involved attending to memory-matching items, these items elicited a large and early N2pc. Our findings demonstrate that working memory representations alone are not sufficient to guide early deployments of visual attention to matching inputs and that goal-dependent executive control mediates the interactions between working memory representations and visual attention.


2021 ◽  
Vol 15 ◽  
Author(s):  
Minju Kim ◽  
Jongsu Kim ◽  
Dojin Heo ◽  
Yunjoo Choi ◽  
Taejun Lee ◽  
...  

Using P300-based brain–computer interfaces (BCIs) in daily life should take into account the user’s emotional state because various emotional conditions are likely to influence event-related potentials (ERPs) and consequently the performance of P300-based BCIs. This study aimed at investigating whether external emotional stimuli affect the performance of a P300-based BCI, particularly built for controlling home appliances. We presented a set of emotional auditory stimuli to subjects, which had been selected for each subject based on individual valence scores evaluated a priori, while they were controlling an electric light device using a P300-based BCI. There were four conditions regarding the auditory stimuli, including high valence, low valence, noise, and no sound. As a result, subjects controlled the electric light device using the BCI in real time with a mean accuracy of 88.14%. The overall accuracy and P300 features over most EEG channels did not show a significant difference between the four auditory conditions (p > 0.05). When we measured emotional states using frontal alpha asymmetry (FAA) and compared FAA across the auditory conditions, we also found no significant difference (p > 0.05). Our results suggest that there is no clear evidence to support a hypothesis that external emotional stimuli influence the P300-based BCI performance or the P300 features while people are controlling devices using the BCI in real time. This study may provide useful information for those who are concerned with the implementation of a P300-based BCI in practice.


Sign in / Sign up

Export Citation Format

Share Document