scholarly journals MODIFICATION OF HUMAN AIRWAY SMOOTH MUSCLE REACTIVITY BY DRUGS THAT INTERFERE WITH ARACHIDONIC ACID METABOLISM

1982 ◽  
Vol 77 (4) ◽  
pp. 570-572 ◽  
Author(s):  
JOHN J. ADCOCK ◽  
LAWRENCE G. GARLAND
1997 ◽  
Vol 273 (6) ◽  
pp. L1132-L1140 ◽  
Author(s):  
Linhua Pang ◽  
Alan J. Knox

Prostanoids may be involved in bradykinin (BK)-induced bronchoconstriction in asthma. We investigated whether cyclooxygenase (COX)-2 induction was involved in prostaglandin (PG) E2 release by BK in cultured human airway smooth muscle (ASM) cells and analyzed the BK receptor subtypes responsible. BK stimulated PGE2release, COX activity, and COX-2 induction in a concentration- and time-dependent manner. It also time dependently enhanced arachidonic acid release. In short-term (15-min) experiments, BK stimulated PGE2 generation but did not increase COX activity or induce COX-2. In long-term (4-h) experiments, BK enhanced PGE2 release and COX activity and induced COX-2. The long-term responses were inhibited by the protein synthesis inhibitors cycloheximide and actinomycin D and the steroid dexamethasone. The effects of BK were mimicked by the B2-receptor agonist [Tyr(Me)8]BK, whereas the B1 agonist des-Arg9-BK was weakly effective at high concentrations. The B2antagonist HOE-140 potently inhibited all the effects, but the B1 antagonist des-Arg9,(Leu8)-BK was inactive. This study is the first to demonstrate that BK can induce COX-2. Conversion of increased arachidonic acid release to PGE2 by COX-1 is mainly involved in the short-term effect, whereas B2 receptor-related COX-2 induction is important in the long-term PGE2 release.


1983 ◽  
Vol 61 (7) ◽  
pp. 705-713 ◽  
Author(s):  
C. Davis ◽  
T. R. Jones ◽  
E. E. Daniel

This investigation was carried out to study allergic contraction of passively sensitized human airway smooth muscle in response to specific antigen challenge. We attempted to determine the role played by histamine, slow reaction substances (SRSs), and cyclooxygenase products in the mediation of this response in tracheal smooth muscle. Tissues were passively sensitized with serum from ragweed-sensitive patients (15 h, 4 °C). Subsequent challenge with ragweed antigen produced a slowly developing contraction. The peak contraction to a dose producing a maximal response was 37 ± 6% of the carbachol maximum. Mepyramine (5 × 10−6 M) did not alter the contraction. Methylprednisolone (2 × 10−5 M) attenuated the response to antigen but had no significant effect on the contractile response to arachidonic acid. Indomethacin (5.6–28 × 10−6 M) enhanced the peak antigen-induced contractions by 25 ± 11% whereas 5, 8, 11, 14-eicosatetraynoic acid (6.4 × 10−5 M) selectively attenuated the antigen-induced contraction by 86 ± 12%. Nordihydroguarietic acid (6–12 × 10−6 M) attenuated both the antigen plus arachidonate induced responses. FPL-55712 (1–2 × 10−6 M) antagonized the contractions to antigen. Compound 48/80 and goat antihuman immunoglobulin E produced similar slowly developing contractions in sensitized and in some nonsensitized tissues. These responses, except for an early component of the response to 48/80, were independent of histamine and were reversed by FPL-55712. These findings suggest that arachidonic acid metabolites mediate (slow reacting substances) and modulate (prostaglandins) allergic contraction of human airway smooth muscle while any histamine released contributes little or nothing to the contraction in the larger airways.


1989 ◽  
Vol 256 (2) ◽  
pp. C329-C335 ◽  
Author(s):  
R. A. Panettieri ◽  
R. K. Murray ◽  
L. R. DePalo ◽  
P. A. Yadvish ◽  
M. I. Kotlikoff

We report the development of a nontransformed line of human airway smooth muscle cells retaining smooth muscle-specific contractile protein expression and physiological responsiveness to agonists implicated in inflammatory airway diseases. Specific responses to histamine, leukotrienes, bradykinin, platelet-activating factor, substance P, and thromboxane analogues are demonstrated as well as functional coupling to beta-adrenergic receptors. The cell line was characterized using indirect immunofluorescence, as well as electrophoretic separation and immunoblot analysis of smooth muscle-specific actin. Functional responses were assessed by measurements of cytosolic calcium and stimulation of adenosine 3',5'-cyclic monophosphate production. The cells retain their responsiveness over many population doublings and should be a useful model to examine specific receptor-effector mechanisms, as well as the effects of neurohumoral agents on the regulation of airway smooth muscle growth and differentiation.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Shengjie Xu ◽  
Anthony Schwab ◽  
Nikhil Karmacharya ◽  
Gaoyuan Cao ◽  
Joanna Woo ◽  
...  

Abstract Background Activation of free fatty acid receptors (FFAR1 and FFAR4) which are G protein-coupled receptors (GPCRs) with established (patho)physiological roles in a variety of obesity-related disorders, induce human airway smooth muscle (HASM) cell proliferation and shortening. We reported amplified agonist-induced cell shortening in HASM cells obtained from obese lung donors. We hypothesized that FFAR1 modulate excitation–contraction (EC) coupling in HASM cells and play a role in obesity-associated airway hyperresponsiveness. Methods In HASM cells pre-treated (30 min) with FFAR1 agonists TAK875 and GW9508, we measured histamine-induced Ca2+ mobilization, myosin light chain (MLC) phosphorylation, and cortical tension development with magnetic twisting cytometry (MTC). Phosphorylation of MLC phosphatase and Akt also were determined in the presence of the FFAR1 agonists or vehicle. In addition, the effects of TAK875 on MLC phosphorylation were measured in HASM cells desensitized to β2AR agonists by overnight salmeterol treatment. The inhibitory effect of TAK875 on MLC phosphorylation was compared between HASM cells from age and sex-matched non-obese and obese human lung donors. The mean measurements were compared using One-Way ANOVA with Dunnett’s test for multiple group comparisons or Student’s t-test two-group comparison. For cortical tension measurements by magnetic twisted cytometry, mixed effect model using SAS V.9.2 was applied. Means were considered significant when p ≤ 0.05. Results Unexpectedly, we found that TAK875, a synthetic FFAR1 agonist, attenuated histamine-induced MLC phosphorylation and cortical tension development in HASM cells. These physiological outcomes were unassociated with changes in histamine-evoked Ca2+ flux, protein kinase B (AKT) activation, or MLC phosphatase inhibition. Of note, TAK875-mediated inhibition of MLC phosphorylation was maintained in β2AR-desensitized HASM cells and across obese and non-obese donor-derived HASM cells. Conclusions Taken together, our findings identified the FFAR1 agonist TAK875 as a novel bronchoprotective agent that warrants further investigation to treat difficult-to-control asthma and/or airway hyperreactivity in obesity.


Sign in / Sign up

Export Citation Format

Share Document