2. The Salzburg Conference on Nuclear Power and its Fuel Cycle

1978 ◽  
Vol 2 (2) ◽  
pp. 196-199
Author(s):  
R. KRYMM
Keyword(s):  
1983 ◽  
Vol 25 (3) ◽  
pp. 377-415 ◽  
Author(s):  
Margarete K. Luddemann

The pivotal role energy plays in national economics not only converts the access to sources of supply into a vivid issue of foreign policy concern, but also causes an understandable preoccupation with investment capabilities and self-sufficiency. A report prepared by the International Atomic Energy Agency (IAEA) in 1974 predicted a bright future for nuclear energy in the i developing countries and encouraged use of this form of energy after numerous field studies.A nation that commits itself to nuclear energy by purchasing nuclear power-generating technology but not fuel cycle facilities incurs the risk of becoming dependent upon the supplier country because a quick switch to alternative sources of supply is difficult in cases of curtailment of fuel.


Author(s):  
E.P. Velikhov ◽  
◽  
A.O. Gol’tsev ◽  
V.D. Davidenko ◽  
A.V. El’shin ◽  
...  

2018 ◽  
Vol 4 (2) ◽  
pp. 119-125
Author(s):  
Vadim Naumov ◽  
Sergey Gusak ◽  
Andrey Naumov

The purpose of the present study is the investigation of mass composition of long-lived radionuclides accumulated in the fuel cycle of small nuclear power plants (SNPP) as well as long-lived radioactivity of spent fuel of such reactors. Analysis was performed of the published data on the projects of SNPP with pressurized water-cooled reactors (LWR) and reactors cooled with Pb-Bi eutectics (SVBR). Information was obtained on the parameters of fuel cycle, design and materials of reactor cores, thermodynamic characteristics of coolants of the primary cooling circuit for reactor facilities of different types. Mathematical models of fuel cycles of the cores of reactors of ABV, KLT-40S, RITM-200M, UNITERM, SVBR-10 and SVBR-100 types were developed. The KRATER software was applied for mathematical modeling of the fuel cycles where spatial-energy distribution of neutron flux density is determined within multi-group diffusion approximation and heterogeneity of reactor cores is taken into account using albedo method within the reactor cell model. Calculation studies of kinetics of burnup of isotopes in the initial fuel load (235U, 238U) and accumulation of long-lived fission products (85Kr, 90Sr, 137Cs, 151Sm) and actinoids (238,239,240,241,242Pu, 236U, 237Np, 241Am, 244Cm) in the cores of the examined SNPP reactor facilities were performed. The obtained information allowed estimating radiation characteristics of irradiated nuclear fuel and implementing comparison of long-lived radioactivity of spent reactor fuel of the SNPPs under study and of their prototypes (nuclear propulsion reactors). The comparison performed allowed formulating the conclusion on the possibility in principle (from the viewpoint of radiation safety) of application of SNF handling technology used in prototype reactors in the transportation and technological process layouts of handling SNF of SNPP reactors.


2006 ◽  
Vol 985 ◽  
Author(s):  
James Bresee

AbstractIn the January 2006 State of the Union address, President Bush announced a new Advanced Energy Initiative, a significant part of which is the Global Nuclear Energy Initiative. Its details were described on February 6, 2006 by the U.S. Secretary of Energy. In summary, it has three parts: (1) a program to expand nuclear energy use domestically and in foreign countries to support economic growth while reducing the release of greenhouse gases such as carbon dioxide. (2) an expansion of the U.S. nuclear infrastructure that will lead to the recycling of spent fuel and a closed fuel cycle and, through transmutation, a reduction in the quantity and radiotoxicity of nuclear waste and its proliferation concerns, and (3) a partnership with other fuel cycle nations to support nuclear power in additional nations by providing small nuclear power plants and leased fuel with the provision that the resulting spent fuel would be returned by the lessee to the lessor. The final part would have the effect of stabilizing the number of fuel cycle countries with attendant non-proliferation value. Details will be given later in the paper.


Author(s):  
R. Thomas Peake ◽  
Daniel Schultheisz ◽  
Loren W. Setlow ◽  
Brian Littleton ◽  
Reid Rosnick ◽  
...  

The United States Environmental Protection Agency’s (EPA) Radiation Protection Division is the portion of EPA (or the Agency) that develops environmental standards for radioactive waste disposal in the United States. One current issue of concern is the disposal of low activity radioactive waste (LAW), including wastes that would be produced by a radiological dispersal device (RDD), for which current disposal options may be either inconsistent with the hazard presented by the material or logistically problematic. Another major issue is related to the resurgence in uranium mining. Over the past several years, demand for uranium for nuclear power plant fuel has increased as has the price. The increase in price has made uranium mining potentially profitable in the US. EPA is reviewing its relevant regulations, developed primarily in the 1980s, for potential revisions. For example, in-situ leaching (also known as in-situ recovery) is now the technology of choice where applicable, yet our current environmental standards are focused on conventional uranium milling. EPA has two actions in process, one related to the Clean Air Act, the other related to revising the environmental standards that implement the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). Separately, but related, EPA has developed over the last several years uranium mining documents that address technologically enhanced natural occurring radioactive materials (TENORM) from abandoned uranium mines, and wastes generated by active uranium extraction facilities. Lastly, in 1977 EPA developed environmental standards that address nuclear energy, fuel fabrication, reprocessing, and other aspects of the uranium fuel cycle. In light of the increased interest in nuclear power and the potential implementation of advanced fuel cycle technologies, the Agency is now reviewing the standards to determine their continued applicability for the twenty-first century.


Author(s):  
R. Allard ◽  
X. Delhaye ◽  
J. L. Gre´er ◽  
D. Thierens ◽  
J. P. Wilmart ◽  
...  

The Belgian Tihange 2 nuclear power plant went into commercial operation in 1983 producing a thermal power of 2785 MW. In 1995, the thermal power output was increased up to 2905 MW and the fuel cycle extended to 15 months. Since the commissioning of the plant, the steam generators U-tubes have been affected by primary stress corrosion cracking. In order to avoid further degradation of the performance and an increase in repair costs, Electrabel, the owner of the plant, decided in 1997 to replace the 3 steam generators. This decision was supported by the feasibility study performed by Tractebel Energy Engineering which demonstrated that an increase of 10% of the initial power was achievable together with a fuel cycle length of 18 months. Tractebel Energy Engineering was entrusted by Electrabel to manage the project. A multi-contract strategy was adopted. The new steam generators, designed by Mitsubishi, allow raising the thermal power to 3064MW which is 110% of the initial power by an increase of the primary to secondary heat transfer area. The safety analyses necessary to justify the new operation point and the fuel cycle extension to 18 months were performed by Framatome in association with Tractebel Energy Engineering. The work on site took place during the summer of 2001 and was managed by Tractebel Energy Engineering. The SG replacement itself was performed in 17.5 days by Westinghouse PCI and the plant was reconnected to the grid on August 11, after an outage of 63 days (grid to grid). This paper presents various aspects related to the steam generators replacement project, such as the safety analysis program together with the various works on site, project management, organization, and scheduling.


Sign in / Sign up

Export Citation Format

Share Document