Inflammatory change of fatty liver induced by intraportal low-dose lipopolysaccharide infusion deteriorates pancreatic insulin secretion in fructose-induced insulin-resistant rats

2008 ◽  
Vol 28 (8) ◽  
pp. 1167-1175 ◽  
Author(s):  
Po-Shiuan Hsieh
Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 1837-P
Author(s):  
ALISON D. MCNEILLY ◽  
JENNIFER GALLAGHER ◽  
RORY J. MCCRIMMON

Diabetes ◽  
1975 ◽  
Vol 24 (10) ◽  
pp. 910-914 ◽  
Author(s):  
M. Chen ◽  
S. C. Woods ◽  
D. Porte

Diabetologia ◽  
2007 ◽  
Vol 50 (9) ◽  
pp. 1867-1879 ◽  
Author(s):  
A. A. Toye ◽  
M. E. Dumas ◽  
C. Blancher ◽  
A. R. Rothwell ◽  
J. F. Fearnside ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Robin Mesnage ◽  
George Renney ◽  
Gilles-Eric Séralini ◽  
Malcolm Ward ◽  
Michael N. Antoniou

Abstract The impairment of liver function by low environmentally relevant doses of glyphosate-based herbicides (GBH) is still a debatable and unresolved matter. Previously we have shown that rats administered for 2 years with 0.1 ppb (50 ng/L glyphosate equivalent dilution; 4 ng/kg body weight/day daily intake) of a Roundup GBH formulation showed signs of enhanced liver injury as indicated by anatomorphological, blood/urine biochemical changes and transcriptome profiling. Here we present a multiomic study combining metabolome and proteome liver analyses to obtain further insight into the Roundup-induced pathology. Proteins significantly disturbed (214 out of 1906 detected, q < 0.05) were involved in organonitrogen metabolism and fatty acid β-oxidation. Proteome disturbances reflected peroxisomal proliferation, steatosis and necrosis. The metabolome analysis (55 metabolites altered out of 673 detected, p < 0.05) confirmed lipotoxic conditions and oxidative stress by showing an activation of glutathione and ascorbate free radical scavenger systems. Additionally, we found metabolite alterations associated with hallmarks of hepatotoxicity such as γ-glutamyl dipeptides, acylcarnitines, and proline derivatives. Overall, metabolome and proteome disturbances showed a substantial overlap with biomarkers of non-alcoholic fatty liver disease and its progression to steatohepatosis and thus confirm liver functional dysfunction resulting from chronic ultra-low dose GBH exposure.


Endocrinology ◽  
2014 ◽  
Vol 156 (2) ◽  
pp. 444-452 ◽  
Author(s):  
Kyuho Kim ◽  
Chang-Myung Oh ◽  
Mica Ohara-Imaizumi ◽  
Sangkyu Park ◽  
Jun Namkung ◽  
...  

The physiological role of serotonin, or 5-hydroxytryptamine (5-HT), in pancreatic β-cell function was previously elucidated using a pregnant mouse model. During pregnancy, 5-HT increases β-cell proliferation and glucose-stimulated insulin secretion (GSIS) through the Gαq-coupled 5-HT2b receptor (Htr2b) and the 5-HT3 receptor (Htr3), a ligand-gated cation channel, respectively. However, the role of 5-HT in β-cell function in an insulin-resistant state has yet to be elucidated. Here, we characterized the metabolic phenotypes of β-cell-specific Htr2b−/− (Htr2b βKO), Htr3a−/− (Htr3a knock-out [KO]), and β-cell-specific tryptophan hydroxylase 1 (Tph1)−/− (Tph1 βKO) mice on a high-fat diet (HFD). Htr2b βKO, Htr3a KO, and Tph1 βKO mice exhibited normal glucose tolerance on a standard chow diet. After 6 weeks on an HFD, beginning at 4 weeks of age, both Htr3a KO and Tph1 βKO mice developed glucose intolerance, but Htr2b βKO mice remained normoglycemic. Pancreas perfusion assays revealed defective first-phase insulin secretion in Htr3a KO mice. GSIS was impaired in islets isolated from HFD-fed Htr3a KO and Tph1 βKO mice, and 5-HT treatment improved insulin secretion from Tph1 βKO islets but not from Htr3a KO islets. Tph1 and Htr3a gene expression in pancreatic islets was not affected by an HFD, and immunostaining could not detect 5-HT in pancreatic islets from mice fed an HFD. Taken together, these results demonstrate that basal 5-HT levels in β-cells play a role in GSIS through Htr3, which becomes more evident in a diet-induced insulin-resistant state.


2021 ◽  
Author(s):  
Emma Ahlqvist ◽  
Rashmi B Prasad ◽  
Leif Groop

Type 2 diabetes (T2D) is one of the fastest increasing diseases worldwide. Although it is defined by a single metabolite, glucose, it is increasingly recognized as a highly heterogeneous disease with varying clinical manifestations. Identification of different subtypes at an early stage of disease when complications might still be prevented could hopefully allow for more personalized medicine. An important step towards precision medicine would be to target the right resources to the right patients, thereby improving patient health and reducing health costs for the society. More well-defined disease populations also offer increased power in experimental, genetic and clinical studies. In a recent study, we used six clinical variables (GAD autoantibodies, age at onset of diabetes, HbA1c, BMI, and simple measures of insulin resistance and insulin secretion (so called HOMA estimates) to cluster adult-onset diabetes patients into five subgroups. These subgroups have been robustly reproduced in several populations worldwide and are associated with different risks of diabetic complications and responses to treatment. Importantly, the group with severe insulin-deficient diabetes (SIDD) had increased risk of retinopathy and neuropathy, whereas the severe insulin-resistant diabetes (SIRD) group has the highest risk for diabetic kidney disease (DKD) and fatty liver. This emphasizes the key role of insulin resistance in the pathogenesis of DKD and fatty liver in T2D. In conclusion, this novel sub-classification, breaking down T2D in clinically meaningful subgroups, provides the prerequisite framework for expanded personalized medicine in diabetes beyond what is already available for monogenic and to some extent type 1 diabetes.


Author(s):  
Dale S. Edgerton ◽  
Mary Courtney Moore ◽  
Justin M. Gregory ◽  
Guillaume Kraft ◽  
Alan D. Cherrington

Pancreatic insulin secretion produces an insulin gradient at the liver compared to the rest of the body (approximately 3:1). This physiologic distribution is lost when insulin is injected subcutaneously, causing impaired regulation of hepatic glucose production and whole body glucose uptake, as well as arterial hyperinsulinemia. Thus, the hepatoportal insulin gradient is essential to the normal control of glucose metabolism during both fasting and feeding. Insulin can regulate hepatic glucose production and uptake through multiple mechanisms, but its direct effects on the liver are dominant under physiologic conditions. Given the complications associated with iatrogenic hyperinsulinemia in patients treated with insulin, insulin designed to preferentially target the liver may have therapeutic advantages.


2008 ◽  
Vol 115 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Paola Loria ◽  
Amedeo Lonardo ◽  
Giovanni Targher

NAFLD (non-alcoholic fatty liver disease) encompasses the spectrum of fatty liver disease in insulin-resistant individuals who often display T2DM (Type 2 diabetes mellitus) and obesity. The present review highlights the pathophysiological basis and clinical evidence for a possible causal linkage between NAFLD and CVD (cardiovascular disease). The role of traditional and non-traditional CVD risk factors in the pathophysiology of NAFLD is considered in the first part of the review, with the basic science shared by atherogenesis and hepatic steatogenesis discussed in depth in the second part. In conclusion, NAFLD is not an innocent bystander, but a major player in the development and progression of CVD. NAFLD and CVD also share similar molecular mechanisms and targeted treatment strategies. On the research side, studies should focus on interventions aimed at restoring energy homoeostasis in lipotoxic tissues and at improving hepatic (micro)vascular blood supply.


Sign in / Sign up

Export Citation Format

Share Document