scholarly journals The role of the fluid phase during regional metamorphism and deformation

1983 ◽  
Vol 1 (3) ◽  
pp. 205-226 ◽  
Author(s):  
M. A. ETHERIDGE ◽  
V. J. WALL ◽  
R. H. VERNON
2021 ◽  
Vol 23 (2) ◽  
Author(s):  
Silvia Rosina ◽  
Cecilia Beatrice Chighizola ◽  
Angelo Ravelli ◽  
Rolando Cimaz

Abstract Purpose of Review Elucidating the pathogenic mechanisms mediated by antiphospholipid antibodies (aPL) might exert important clinical implications in pediatric antiphospholipid syndrome (APS). Recent Findings aPL are traditionally regarded as the main pathogenic players in APS, inducing thrombosis via the interaction with fluid-phase and cellular components of coagulation. Recent APS research has focused on the role of β2 glycoprotein I, which bridges innate immunity and coagulation. In pediatric populations, aPL should be screened in appropriate clinical settings, such as thrombosis, multiple-organ dysfunction, or concomitant systemic autoimmune diseases. Children positive for aPL tests often present non-thrombotic non-criteria manifestations or asymptomatic aPL positivity. In utero aPL exposure has been suggested to result in developmental disabilities, warranting long-term follow-up. Summary The knowledge of the multifaceted nature of pediatric APS should be implemented to reduce the risk of underdiagnosing/undertreating this condition. Hopefully, recent pathogenic insights will open new windows of opportunity in the management of pediatric APS.


1998 ◽  
Vol 111 (22) ◽  
pp. 3347-3356 ◽  
Author(s):  
B. Singer-Kruger ◽  
Y. Nemoto ◽  
L. Daniell ◽  
S. Ferro-Novick ◽  
P. De Camilli

The synaptojanins represent a subfamily of inositol 5′-phosphatases that contain an NH2-terminal Sac1p homology domain. A nerve terminal-enriched synaptojanin, synaptojanin 1, was previously proposed to participate in the endocytosis of synaptic vesicles and actin function. The genome of Saccharomyces cerevisiae contains three synaptojanin-like genes (SJL1, SJL2 and SJL3), none of which is essential for growth. We report here that a yeast mutant lacking SJL1 and SJL2 (Deltasjl1 Deltasjl2) exhibits a severe defect in receptor-mediated and fluid-phase endocytosis. A less severe endocytic defect is present in a Deltasjl2 Deltasjl3 mutant, while endocytosis is normal in a Deltasjl1 Deltasjl3 mutant. None of the mutants are impaired in invertase secretion. The severity of the endocytic impairment of the sjl double mutants correlates with the severity of actin and polarity defects. Furthermore, the deletion of SJL1 suppresses the temperature-sensitive growth defect of sac6, a mutant in yeast fimbrin, supporting a role for synaptojanin family members in actin function. These findings provide a first direct evidence for a role of synaptojanin family members in endocytosis and provide further evidence for a close link between endocytosis and actin function.


2018 ◽  
Vol 14 (12) ◽  
pp. e1007469 ◽  
Author(s):  
Valeria Ciancarella ◽  
Luigi Lembo-Fazio ◽  
Ida Paciello ◽  
Anna-Karin Bruno ◽  
Sébastien Jaillon ◽  
...  

Author(s):  
Emmanuel E. Luther ◽  
Seyed M. Shariatipour ◽  
Michael C. Dallaston ◽  
Ran Holtzman

AbstractCO2 geological sequestration has been proposed as a climate change mitigation strategy that can contribute towards meeting the Paris Agreement. A key process on which successful injection of CO2 into deep saline aquifer relies on is the dissolution of CO2 in brine. CO2 dissolution improves storage security and reduces risk of leakage by (i) removing the CO2 from a highly mobile fluid phase and (ii) triggering gravity-induced convective instability which accelerates the downward migration of dissolved CO2. Our understanding of CO2 density-driven convection in geologic media is limited. Studies on transient convective instability are mostly in homogeneous systems or in systems with heterogeneity in the form of random permeability distribution or dispersed impermeable barriers. However, layering which exist naturally in sedimentary geological formations has not received much research attention on transient convection. Therefore, we investigate the role of layering on the onset time of convective instability and on the flow pattern beyond the onset time during CO2 storage. We find that while layering has no significant effect on the onset time, it has an impact on the CO2 flux. Our findings suggest that detailed reservoir characterisation is required to forecast the ability of a formation to sequester CO2.


1976 ◽  
Vol 13 (3) ◽  
pp. 405-421 ◽  
Author(s):  
Lee C. Pigage

Pelitic metasediments immediately southwest of Yale, British Columbia contain mineral assemblages characteristic of staurolite through sillimanite zones of the Barrovian facies series. Microprobe analyses of major constituent phases in the pelites are combined with linear regression techniques to formulate probable kyanite- and sillimanite-forming reactions.A zone some 3 km wide contains the assemblage staurolite–kyanite–garnet–biotite–muscovite–quartz–plagioclase-ilmenite-rutile, which is univariant in AFM projection. Within precision limits of microprobe analysis, this assemblage is also univariant using linear regression techniques. Univariant relations are possible if [Formula: see text] with the composition of the fluid phase being buffered by the progressing reaction. This assemblage emphasizes the need for precise analyses when using the regression method, since minor components are often within permissible error limits rather than being balanced.Pelitic and calc-silicate assemblages from the metasediments restrict estimates of pressure–temperature conditions during regional metamorphism to 6–8 kbar and 550–770 °C. Pseudomorphs after andalusite indicate that contact metamorphism preceded regional upgrading of the pelites.


1993 ◽  
Vol 264 (4) ◽  
pp. F585-F592
Author(s):  
M. Loghman-Adham ◽  
G. T. Motock

Exposure of various cells to hyposmotic media (Hypo) results in a rapid inhibition of both receptor-mediated and fluid-phase endocytosis. We used this maneuver to investigate the role of endocytosis in regulation of Pi transport in opossum kidney (OK) cells. Following exposure to Hypo, Na(+)-dependent Pi uptake increased rapidly, reaching a maximum within 5 min, and remained elevated up to 30 min. This was associated with a simultaneous reduction of horseradish peroxidase uptake. Kinetic studies showed increased apparent Vmax for Pi (9.38 +/- 0.93 vs. 13.08 +/- 1.04 nmol.mg-1.5 min-1 for control and Hypo, respectively; P < 0.05, n = 6) with no change in apparent Km. The effect was specific for Pi with no change in the Na(+)-dependent or -independent uptake of L-proline, L-glutamine, or methyl-alpha-D-glucopyranoside. Stimulation of Pi transport persisted when control and Hypo had identical ionic compositions. Stimulation of Pi transport was rapidly reversed when cells were returned to an isosmotic medium. Preincubation with Hypo at 4 degrees C had no effect on Pi transport. Addition of cycloheximide or actinomycin D did not prevent the increased Pi uptake after exposure to Hypo. The effect also persisted after protein kinase C downregulation. Stimulation of Pi transport by Hypo is consistent with reduced endocytic retrieval of Na(+)-Pi cotransporters from brush-border membrane (BBM), resulting in an increase in their number on the BBM.


1983 ◽  
Vol 157 (4) ◽  
pp. 1239-1251 ◽  
Author(s):  
T Fujita ◽  
N Tamura

Purified C4-binding protein (C4-bp) was shown to bind to cell-bound C4b by radioactive tracer techniques. With EAC4 bearing greater than 3,000 C4b-molecules/cell, the number of C4-bp molecules bound was directly proportional to the number of C4b molecule on the cell surface; EAC4 bearing less than 3,000 C4b-molecules/cell bound a very small amount of C4-bp. Scatchard analysis of binding of C4-bp indicated an equilibrium constant of 4.6 X 10(8) L/M and a maximum of 0.43 C4-bp molecules bound per C4b molecule, equivalent to an average of one molecule of C4-bp per two or three molecules of C4b. Fluid-phase C4b inhibited the binding of C4-bp to cell-bound C4b in a dose-dependent manner, whereas native C4 had little effect. C2 inhibited this binding and also released C4-bp from EAC4,C4-bp. However, C2 was 27 times less effective than unlabeled C4-bp on a molar basis and a considerable amount of C4-bp remained bound to C4b on the cell surface even in the presence of a large excess of C2. We also examined the cofactor activity of C4-bp in the cleavage of cell-bound C4b by C3b/C4b inactivator (I). Cleavage of the alpha' chain of C4b on the cell surface by I alone was incomplete and an intermediate cleavage product, alpha-75, was observed. When C4-bp bound to C4b on the cell surface, the alpha' chain of the C4b cleaved into three fragments, alpha 2, alpha 3, and alpha 4. The alpha 3, alpha 4, beta, and gamma peptides (C4c) were released into the fluid phase, and the alpha 2 fragment (C4d) remained linked covalently to the cell membrane via an ester bond. In some situations, therefore, C4-bp enhances the proteolytic activity of I on cell-bound C4b.


2004 ◽  
Vol 15 (2) ◽  
pp. 861-869 ◽  
Author(s):  
Yaya Lefkir ◽  
Marilyne Malbouyres ◽  
Daniel Gotthardt ◽  
Adrian Ozinsky ◽  
Sophie Cornillon ◽  
...  

The best described function of the adaptor complex-1 (AP-1) is to participate in the budding of clathrin-coated vesicles from the trans-Golgi network and endosomes. Here, we show that AP-1 is also localized to phagocytic cups in murine macrophages as well as in Dictyostelium amoebae. AP-1 is recruited to phagosomal membranes at this early stage of phagosome formation and rapidly dissociates from maturing phagosomes. To establish the role of AP-1 in phagocytosis, we made used of Dictyostelium mutant cells (apm1-cells) disrupted for AP-1 medium chain. In this mutant, phagocytosis drops by 60%, indicating that AP-1 is necessary for efficient phagocytosis. Furthermore, phagocytosis in apm1-cells is more affected for large rather than small particles, and cells exhibiting incomplete engulfment are then often observed. This suggests that AP-1 could participate in the extension of the phagocytic cup. Interestingly, macropinocytosis, a process dedicated to fluid-phase endocytosis and related to phagocytosis, is also impaired in apm1-cells. In summary, our data suggest a new role of AP-1 at an early stage of phagosome and macropinosome formation.


Blood ◽  
2012 ◽  
Vol 120 (22) ◽  
pp. 4421-4431 ◽  
Author(s):  
Kan Chen ◽  
Hiroshi Nishi ◽  
Richard Travers ◽  
Naotake Tsuboi ◽  
Kimberly Martinod ◽  
...  

Abstract Soluble immune complexes (ICs) are abundant in autoimmune diseases, yet neutrophil responses to these soluble humoral factors remain uncharacterized. Moreover, the individual role of the uniquely human FcγRIIA and glycophosphatidylinositol (GPI)–linked FcγRIIIB in IC-mediated inflammation is still debated. Here we exploited mice and cell lines expressing these human neutrophil FcγRs to demonstrate that FcγRIIIB alone, in the absence of its known signaling partners FcγRIIA and the integrin Mac-1, internalizes soluble ICs through a mechanism used by GPI-anchored receptors and fluid-phase endocytosis. FcγRIIA also uses this pathway. As shown by intravital microscopy, FcγRIIA but not FcγRIIIB-mediated neutrophil interactions with extravascular soluble ICs results in the formation of neutrophil extracellular traps (NETs) in tissues. Unexpectedly, in wild-type mice, IC-induced NETosis does not rely on the NADPH oxidase, myeloperoxidase, or neutrophil elastase. In the context of soluble ICs present primarily within vessels, FcγRIIIB-mediated neutrophil recruitment requires Mac-1 and is associated with the removal of intravascular IC deposits. Collectively, our studies assign a new role for FcγRIIIB in the removal of soluble ICs within the vasculature that may serve to maintain homeostasis, whereas FcγRIIA engagement of tissue soluble ICs generates NETs, a proinflammatory process linked to autoimmunity.


Sign in / Sign up

Export Citation Format

Share Document