Numerical simulation of diffusion-controlled nucleation and growth of porphyroblasts

2012 ◽  
Vol 30 (5) ◽  
pp. 489-512 ◽  
Author(s):  
R. A. KETCHAM ◽  
W. D. CARLSON
2021 ◽  
pp. 2000265
Author(s):  
Neeta Karjule ◽  
Moumita Rana ◽  
Menny Shalom ◽  
Jesús Barrio ◽  
Juan José Vilatela

2005 ◽  
Vol 109 (35) ◽  
pp. 16684-16694 ◽  
Author(s):  
Gyula Eres ◽  
Anika A. Kinkhabwala ◽  
Hongtao Cui ◽  
David B. Geohegan ◽  
Alexandar A. Puretzky ◽  
...  

1996 ◽  
Vol 457 ◽  
Author(s):  
J. Zhu ◽  
T. Pradell ◽  
N. Clavaguera ◽  
M. T. Clavaguera-Mora

ABSTRACTDifferential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), Neutron Diffraction (ND) and Mössbauer Spectroscopy (MS) were used to study the nanocrystallization process of Fe73.5Cu1Nb3Si22.5–xBx (x=5, 7, 8, 9 and 12) amorphous alloys. Both the temperature range and the activation energy of Fe(Si) phase precipitation from the amorphous martrix increase with the initial B composition. The initial Si composition influences the mechanism of the nanocrystallization: for the Si rich samples, the beginning of nucleation and growth processes is interface controlled, for the B rich samples it is diffusion controlled. Secondary crystallization from the remaining amorphous is mainly Fe3B and Fe2B, the ratio of Fe3B/Fe2B being dependent on the initial composition too.


A kinetic and mechanistic study of the dehydration of d lithium potassium tartrate monohydrate has been undertaken. Water evolution is completed through two separate rate processes. The first reaction is the deceleratory, diffusion-controlled release of water from the superficial zones of the reactant crystals. The yield of this process corresponds to the dehydration of a superficial layer of crystal, thickness 10 µm. About 4% of the constituent water was evolved from the single crystals studied, rising to 50% from crushed powder reactants. The second reaction, reported in Part II, is a nucleation and growth process yielding the crystalline anhydrous salt. Gravimetric measurements for the first reaction identified three distinct dehydration processes. The first step was the rapid release of loosely bonded superficial water. The subsequent two deceleratory stages are characterized as diffusive loss of H 2 O molecules from a crystal zone that is at first ordered but later becomes disordered as the water-site vacancy concentration increases. Rate measurements based on water evolution measured the activation energy of this third step as 153 + 4 kJ mol -1 . Irreproducibility of rate data is ascribed to variations in numbers and distributions of imperfections between individual crystals. The extent and rate of the first reaction increased when initiated in small pressures of water vapour. Electron microscope observations identified a structural discontinuity ca. 1 µm below reacted crystal faces, evidence of superficial retexturing of the reactant. Rates of powder dehydrations were more reproducible than those of crystals but the kinetic behaviour was similar. The same rate equations were obeyed and the activation energy was unaltered. Water loss during the first reaction of this crystalline hydrate gives a comprehensive layer of extensively dehydrated material across all surfaces. Subsequently, in or under this water depleted layer, salt is recrystallized and dehydration continues as a nucleation and growth reaction (part II, following paper).


2008 ◽  
Vol 570 ◽  
pp. 120-125
Author(s):  
R.M. Ribeiro ◽  
R.S. de Biasi ◽  
D.R. dos Santos ◽  
Dílson S. dos Santos

Crystallization of the amorphous metallic alloy Fe73.5 Cu1Nb3 Si8.5 B14 was investigated by ferromagnetic resonance (FMR), small angle in situ X-ray scattering (SAXS/WAXS) and differential scanning calorimetry (DSC). Only one crystalline phase was observed by WAXS and only one peak was observed by DSC. The activation energies, calculated from FMR and DSC data, were 287 kJ.mol-1 and 313.4 kJ.mol-1, respectively. The values calculated for the Avrami exponent were 0.98 (FMR) and 1.4 (DSC). These values correspond to different mechanisms of nucleation and growth; however, the SAXS /WAXS results suggest that the dominant mechanisms are nucleation and growth of crystals from small dimensions.


2013 ◽  
Vol 160 (11) ◽  
pp. A1992-A1996 ◽  
Author(s):  
Jianming Zheng ◽  
Meng Gu ◽  
Chongmin Wang ◽  
Pengjian Zuo ◽  
Phillip K. Koech ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document