scholarly journals The March of Epileptic Activity across Cortex is Limited (for a While) by the Powerful Forces of Surrounding Inhibition

2007 ◽  
Vol 7 (5) ◽  
pp. 138-139 ◽  
Author(s):  
Carl E. Stafstrom

Modular Propagation of Epileptiform Activity: Evidence for an Inhibitory Veto in Neocortex. Trevelyan AJ, Sussillo D, Watson BO, Yuste R. J Neurosci 2006;26(48):12447–12455. What regulates the spread of activity through cortical circuits? We present here data indicating a pivotal role for a vetoing inhibition restraining modules of pyramidal neurons. We combined fast calcium imaging of network activity with whole-cell recordings to examine epileptiform propagation in mouse neocortical slices. Epileptiform activity was induced by washing Mg2+ ions out of the slice. Pyramidal cells receive barrages of inhibitory inputs in advance of the epileptiform wave. The inhibitory barrages are effectively nullified at low doses of picrotoxin (2.5–5 μM). When present, however, these inhibitory barrages occlude an intense excitatory synaptic drive that would normally exceed action potential threshold by approximately a factor of 10. Despite this level of excitation, the inhibitory barrages suppress firing, thereby limiting further neuronal recruitment to the ictal event. Pyramidal neurons are recruited to the epileptiform event once the inhibitory restraint fails and are recruited in spatially clustered populations (150–250 μm diameter). The recruitment of the cells within a given module is virtually simultaneous, and thus epileptiform events progress in intermittent (0.5–1 Hz) steps across the cortical network. We propose that the interneurons that supply the vetoing inhibition define these modular circuit territories. Feedforward Inhibition Contributes to the Control of Epileptiform Propagation Speed Trevelyan AJ, Sussillo D, Yuste R. J Neurosci 2007;27(13):3383–3387. It is still poorly understood how epileptiform events can recruit cortical circuits. Moreover, the speed of propagation of epileptiform discharges in vivo and in vitro can vary over several orders of magnitude (0.1–100 mm/s), a range difficult to explain by a single mechanism. We previously showed how epileptiform spread in neocortical slices is opposed by a powerful feedforward inhibition ahead of the ictal wave. When this feedforward inhibition is intact, epileptiform spreads very slowly (100 μm/s). We now investigate whether changes in this inhibitory restraint can also explain much faster propagation velocities. We made use of a very characteristic pattern of evolution of ictal activity in the zero magnesium (0 Mg2+) model of epilepsy. With each successive ictal event, the number of preictal inhibitory barrages dropped, and in parallel with this change, the propagation velocity increased. There was a highly significant correlation ( p < 0.001) between the two measures over a 1,000-fold range of velocities, indicating that feedforward inhibition was the prime determinant of the speed of epileptiform propagation. We propose that the speed of propagation is set by the extent of the recruitment steps, which in turn is set by how successfully the feedforward inhibitory restraint contains the excitatory drive. Thus, a single mechanism could account for the wide range of propagation velocities of epileptiform events observed in vitro and in vivo.

2008 ◽  
Vol 99 (3) ◽  
pp. 1394-1407 ◽  
Author(s):  
Sarah Potez ◽  
Matthew E. Larkum

Understanding the impact of active dendritic properties on network activity in vivo has so far been restricted to studies in anesthetized animals. However, to date no study has been made to determine the direct effect of the anesthetics themselves on dendritic properties. Here, we investigated the effects of three types of anesthetics commonly used for animal experiments (urethane, pentobarbital and ketamine/xylazine). We investigated the generation of calcium spikes, the propagation of action potentials (APs) along the apical dendrite and the somatic firing properties in the presence of anesthetics in vitro using dual somatodendritic whole cell recordings. Calcium spikes were evoked with dendritic current injection and high-frequency trains of APs at the soma. Surprisingly, we found that the direct actions of anesthetics on calcium spikes were very different. Two anesthetics (urethane and pentobarbital) suppressed dendritic calcium spikes in vitro, whereas a mixture of ketamine and xylazine enhanced them. Propagation of spikes along the dendrite was not significantly affected by any of the anesthetics but there were various changes in somatic firing properties that were highly dependent on the anesthetic. Last, we examined the effects of anesthetics on calcium spike initiation and duration in vivo using high-frequency trains of APs generated at the cell body. We found the same anesthetic-dependent direct effects in addition to an overall reduction in dendritic excitability in anesthetized rats with all three anesthetics compared with the slice preparation.


1997 ◽  
Vol 78 (3) ◽  
pp. 1735-1739 ◽  
Author(s):  
Denis Paré ◽  
Elen Lebel ◽  
Eric J. Lang

Paré, Denis, Elen LeBel, and Eric J. Lang. Differential impact of miniature synaptic potentials on the somata and dendrites of pyramidal neurons in vivo. J. Neurophysiol. 78: 1735–1739, 1997. We studied the impact of transmitter release resistant to tetrodotoxin (TTX) in morphologically identified neocortical pyramidal neurons recorded intracellularly in barbiturate-anesthetized cats. It was observed that TTX-resistant release occurs in pyramidal neurons in vivo and at much higher frequencies than was previously reported in vitro. Further, in agreement with previous findings indicating that GABAergic and glutamatergic synapses are differentially distributed in the somata and dendrites of pyramidal cells, we found that most miniature synaptic potentials were sensitive to γ-aminobutyric acid-A (GABAA) or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) antagonists in presumed somatic and dendritic impalements, respectively. Pharmacological blockage of spontaneous synaptic events produced large increases in input resistance that were more important in dendritic (≈50%) than somatic (≈10%) impalements. These findings imply that in the intact brain, pyramidal neurons are submitted to an intense spike-independent synaptic bombardment that decreases the space constant of the cells. These results should be taken into account when extrapolating in vitro findings to intact brains.


2001 ◽  
Vol 86 (5) ◽  
pp. 2445-2460 ◽  
Author(s):  
Rezan Demir ◽  
Lewis B. Haberly ◽  
Meyer B. Jackson

Brain slices serve as useful models for the investigation of epilepsy. However, the preparation of brain slices disrupts circuitry and severs axons, thus complicating efforts to relate epileptiform activity in vitro to seizure activity in vivo. This issue is relevant to studies in transverse slices of the piriform cortex (PC), the preparation of which disrupts extensive rostrocaudal fiber systems. In these slices, epileptiform discharges propagate slowly and in a wavelike manner, whereas such discharges in vivo propagate more rapidly and jump abruptly between layers. The objective of the present study was to identify fiber systems responsible for these differences. PC slices were prepared by cutting along three different nearly orthogonal planes (transverse, parasagittal, and longitudinal), and epileptiform discharges were imaged with a voltage-sensitive fluorescent dye. Interictal-like epileptiform activity was enabled by either a kindling-like induction process or disinhibition with bicuculline. The pattern of discharge onset was very similar in slices cut in different planes. As described previously in transverse PC slices, discharges were initiated in the endopiriform nucleus (En) and adjoining regions in a two-stage process, starting with low-amplitude “plateau activity” at one site and leading to an accelerating depolarization and discharge onset at another nearby site. The similar pattern of onset in slices of various orientations indicates that the local circuitry and neuronal properties in and around the En, rather than long-range fibers, assume dominant roles in the initiation of epileptiform activity. Subtle variations in the onset site indicate that interneurons can fine tune the site of discharge onset. In contrast to the mode of onset, discharge propagation showed striking variations. In longitudinal slices, where rostrocaudal association fibers are best preserved, discharge propagation resembled in vivo seizure activity in the following respects: propagation was as rapid as in vivo and about two to three times faster than in other slices; discharges jumped abruptly between the En and PC; and discharges had large amplitudes in superficial layers of the PC. Cuts in longitudinal slices that partially separated the PC from the En eliminated these unique features. These results help clarify why epileptiform activity differs between in vitro and in vivo experiments and suggest that rostrocaudal pyramidal cell association fibers play a major role in the propagation of discharges in the intact brain. The longitudinal PC slice, which best preserves these fibers, is ideally suited for the study their role.


2013 ◽  
Vol 110 (8) ◽  
pp. 1930-1944 ◽  
Author(s):  
Franck Dubruc ◽  
David Dupret ◽  
Olivier Caillard

In the hippocampus, activity-dependent changes of synaptic transmission and spike-timing coordination are thought to mediate information processing for the purpose of memory formation. Here, we investigated the self-tuning of intrinsic excitability and spiking reliability by CA1 hippocampal pyramidal cells via changes of their GABAergic inhibitory inputs and endocannabinoid (eCB) signaling. Firing patterns of CA1 place cells, when replayed in vitro, induced an eCB-dependent transient reduction of spontaneous GABAergic activity, sharing the main features of depolarization-induced suppression of inhibition (DSI), and conditioned a transient improvement of spike-time precision during consecutive burst discharges. When evaluating the consequences of DSI on excitatory postsynaptic potential (EPSP)-spike coupling, we found that transient reductions of uncorrelated (spontaneous) or correlated (feedforward) inhibition improved EPSP-spike coupling probability. The relationship between EPSP-spike-timing reliability and inhibition was, however, more complex: transient reduction of correlated (feedforward) inhibition disrupted or improved spike-timing reliability according to the initial spike-coupling probability. Thus eCB-mediated tuning of pyramidal cell spike-time precision is governed not only by the initial level of global inhibition, but also by the ratio between spontaneous and feedforward GABAergic activities. These results reveal that eCB-mediated self-tuning of spike timing by the discharge of pyramidal cells can constitute an important contribution to place-cell assemblies and memory formation in the hippocampus.


Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1578 ◽  
Author(s):  
Laura Walrave ◽  
Mathieu Vinken ◽  
Luc Leybaert ◽  
Ilse Smolders

In epilepsy research, emphasis is put on exploring non-neuronal targets such as astrocytic proteins, since many patients remain pharmacoresistant to current treatments, which almost all target neuronal mechanisms. This paper reviews available data on astrocytic connexin43 (Cx43) signaling in seizures and epilepsy. Cx43 is a widely expressed transmembrane protein and the constituent of gap junctions (GJs) and hemichannels (HCs), allowing intercellular and extracellular communication, respectively. A plethora of research papers show altered Cx43 mRNA levels, protein expression, phosphorylation state, distribution and/or functional coupling in human epileptic tissue and experimental models. Human Cx43 mutations are linked to seizures as well, as 30% of patients with oculodentodigital dysplasia (ODDD), a rare genetic condition caused by mutations in the GJA1 gene coding for Cx43 protein, exhibit neurological symptoms including seizures. Cx30/Cx43 double knock-out mice show increased susceptibility to evoked epileptiform events in brain slices due to impaired GJ-mediated redistribution of K+ and glutamate and display a higher frequency of spontaneous generalized chronic seizures in an epilepsy model. Contradictory, Cx30/Cx43 GJs can traffic nutrients to high-energy demanding neurons and initiate astrocytic Ca2+ waves and hyper synchronization, thereby supporting proconvulsant effects. The general connexin channel blocker carbenoxolone and blockers from the fenamate family diminish epileptiform activity in vitro and improve seizure outcome in vivo. In addition, interventions with more selective peptide inhibitors of HCs display anticonvulsant actions. To conclude, further studies aiming to disentangle distinct roles of HCs and GJs are necessary and tools specifically targeting Cx43 HCs may facilitate the search for novel epilepsy treatments.


2013 ◽  
Vol 110 (1) ◽  
pp. 221-229 ◽  
Author(s):  
Jonathan Dilgen ◽  
Hugo A. Tejeda ◽  
Patricio O'Donnell

Although interactions between the amygdala and prefrontal cortex (PFC) are critical for emotional guidance of behavior, the manner in which amygdala affects PFC function is not clear. Whereas basolateral amygdala (BLA) output neurons exhibit many characteristics associated with excitatory neurotransmission, BLA stimulation typically inhibits PFC cell firing. This apparent discrepancy could be explained if local PFC inhibitory interneurons were activated by BLA inputs. Here, we used in vivo juxtacellular and intracellular recordings in anesthetized rats to investigate whether BLA inputs evoke feedforward inhibition in the PFC. Juxtacellular recordings revealed that BLA stimulation evoked action potentials in PFC interneurons and silenced most pyramidal neurons. Intracellular recordings from PFC pyramidal neurons showed depolarizing postsynaptic potentials, with multiple components evoked by BLA stimulation. These responses exhibited a relatively negative reversal potential (Erev), suggesting the contribution of a chloride component. Intracellular administration or pressure ejection of the GABA-A antagonist picrotoxin resulted in action-potential firing during the BLA-evoked response, which had a more depolarized Erev. These results suggest that BLA stimulation engages a powerful inhibitory mechanism within the PFC mediated by local circuit interneurons.


2018 ◽  
Vol 29 (9) ◽  
pp. 3778-3795
Author(s):  
Alexandre Pons-Bennaceur ◽  
Vera Tsintsadze ◽  
Thi-thien Bui ◽  
Timur Tsintsadze ◽  
Marat Minlebaev ◽  
...  

Abstract Epilepsy is a multifactorial disorder associated with neuronal hyperexcitability that affects more than 1% of the human population. It has long been known that adenosine can reduce seizure generation in animal models of epilepsies. However, in addition to various side effects, the instability of adenosine has precluded its use as an anticonvulsant treatment. Here we report that a stable analogue of diadenosine-tetraphosphate: AppCH2ppA effectively suppresses spontaneous epileptiform activity in vitro and in vivo in a Tuberous Sclerosis Complex (TSC) mouse model (Tsc1+/−), and in postsurgery cortical samples from TSC human patients. These effects are mediated by enhanced adenosine signaling in the cortex post local neuronal adenosine release. The released adenosine induces A1 receptor-dependent activation of potassium channels thereby reducing neuronal excitability, temporal summation, and hypersynchronicity. AppCH2ppA does not cause any disturbances of the main vital autonomous functions of Tsc1+/− mice in vivo. Therefore, we propose this compound to be a potent new candidate for adenosine-related treatment strategies to suppress intractable epilepsies.


2015 ◽  
Vol 112 (3) ◽  
pp. E321-E328 ◽  
Author(s):  
Sean A. Freeman ◽  
Anne Desmazières ◽  
Jean Simonnet ◽  
Marie Gatta ◽  
Friederike Pfeiffer ◽  
...  

High-density accumulation of voltage-gated sodium (Nav) channels at nodes of Ranvier ensures rapid saltatory conduction along myelinated axons. To gain insight into mechanisms of node assembly in the CNS, we focused on early steps of nodal protein clustering. We show in hippocampal cultures that prenodes (i.e., clusters of Nav channels colocalizing with the scaffold protein ankyrinG and nodal cell adhesion molecules) are detected before myelin deposition along axons. These clusters can be induced on purified neurons by addition of oligodendroglial-secreted factor(s), whereas ankyrinG silencing prevents their formation. The Nav isoforms Nav1.1, Nav1.2, and Nav1.6 are detected at prenodes, with Nav1.6 progressively replacing Nav1.2 over time in hippocampal neurons cultured with oligodendrocytes and astrocytes. However, the oligodendrocyte-secreted factor(s) can induce the clustering of Nav1.1 and Nav1.2 but not of Nav1.6 on purified neurons. We observed that prenodes are restricted to GABAergic neurons, whereas clustering of nodal proteins only occurs concomitantly with myelin ensheathment on pyramidal neurons, implying separate mechanisms of assembly among different neuronal subpopulations. To address the functional significance of these early clusters, we used single-axon electrophysiological recordings in vitro and showed that prenode formation is sufficient to accelerate the speed of axonal conduction before myelination. Finally, we provide evidence that prenodal clusters are also detected in vivo before myelination, further strengthening their physiological relevance.


2009 ◽  
Vol 102 (6) ◽  
pp. 3643-3655 ◽  
Author(s):  
Harald Hentschke ◽  
Claudia Benkwitz ◽  
Matthew I. Banks ◽  
Mark G. Perkins ◽  
Gregg E. Homanics ◽  
...  

Phasic GABAergic inhibition in hippocampus and neocortex falls into two kinetically distinct categories, GABAA,fast and GABAA,slow. In hippocampal area CA1, GABAA,fast is generally believed to underlie gamma oscillations, whereas the contribution of GABAA,slow to hippocampal rhythms has been speculative. Hypothesizing that GABAA receptors containing the β3 subunit contribute to GABAA,slow inhibition and that slow inhibitory synapses control excitability as well as contribute to network rhythms, we investigated the consequences of this subunit's absence on synaptic inhibition and network function. In pyramidal neurons of GABAA receptor β3 subunit-deficient (β3−/−) mice, spontaneous GABAA,slow inhibitory postsynaptic currents (IPSCs) were much less frequent, and evoked GABAA,slow currents were much smaller than in wild-type mice. Fittingly, long-lasting recurrent inhibition of population spikes was less powerful in the mutant, indicating that receptors containing β3 subunits contribute substantially to GABAA,slow currents in pyramidal neurons. By contrast, slow inhibitory control of GABAA,fast-producing interneurons was unaffected in β3−/− mice. In vivo hippocampal network activity was markedly different in the two genotypes. In β3−/− mice, epileptiform activity was observed, and theta oscillations were weaker, slower, less regular and less well coordinated across laminae compared with wild-type mice, whereas gamma oscillations were weaker and faster. The amplitude modulation of gamma oscillations at theta frequency (“nesting”) was preserved but was less well coordinated with theta oscillations. With the caveat that seizure-induced changes in inhibitory circuits might have contributed to the changes observed in the mutant animals, our results point to a strong contribution of β3 subunits to slow GABAergic inhibition onto pyramidal neurons but not onto GABAA,fast -producing interneurons and support different roles for these slow inhibitory synapses in the generation and coordination of hippocampal network rhythms.


Sign in / Sign up

Export Citation Format

Share Document