Differential Impact of Miniature Synaptic Potentials on the Soma and Dendrites of Pyramidal Neurons In Vivo

1997 ◽  
Vol 78 (3) ◽  
pp. 1735-1739 ◽  
Author(s):  
Denis Paré ◽  
Elen Lebel ◽  
Eric J. Lang

Paré, Denis, Elen LeBel, and Eric J. Lang. Differential impact of miniature synaptic potentials on the somata and dendrites of pyramidal neurons in vivo. J. Neurophysiol. 78: 1735–1739, 1997. We studied the impact of transmitter release resistant to tetrodotoxin (TTX) in morphologically identified neocortical pyramidal neurons recorded intracellularly in barbiturate-anesthetized cats. It was observed that TTX-resistant release occurs in pyramidal neurons in vivo and at much higher frequencies than was previously reported in vitro. Further, in agreement with previous findings indicating that GABAergic and glutamatergic synapses are differentially distributed in the somata and dendrites of pyramidal cells, we found that most miniature synaptic potentials were sensitive to γ-aminobutyric acid-A (GABAA) or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) antagonists in presumed somatic and dendritic impalements, respectively. Pharmacological blockage of spontaneous synaptic events produced large increases in input resistance that were more important in dendritic (≈50%) than somatic (≈10%) impalements. These findings imply that in the intact brain, pyramidal neurons are submitted to an intense spike-independent synaptic bombardment that decreases the space constant of the cells. These results should be taken into account when extrapolating in vitro findings to intact brains.

1998 ◽  
Vol 79 (3) ◽  
pp. 1450-1460 ◽  
Author(s):  
Denis Paré ◽  
Eric Shink ◽  
Hélène Gaudreau ◽  
Alain Destexhe ◽  
Eric J. Lang

Paré, Denis, Eric Shink, Hélène Gaudreau, Alain Destexhe, and Eric J. Lang. Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons in vivo. J. Neurophysiol. 79: 1450–1460, 1998. The frequency of spontaneous synaptic events in vitro is probably lower than in vivo because of the reduced synaptic connectivity present in cortical slices and the lower temperature used during in vitro experiments. Because this reduction in background synaptic activity could modify the integrative properties of cortical neurons, we compared the impact of spontaneous synaptic events on the resting properties of intracellularly recorded pyramidal neurons in vivo and in vitro by blocking synaptic transmission with tetrodotoxin (TTX). The amount of synaptic activity was much lower in brain slices (at 34°C), as the standard deviation of the intracellular signal was 10–17 times lower in vitro than in vivo. Input resistances ( R ins) measured in vivo during relatively quiescent epochs (“control R ins”) could be reduced by up to 70% during periods of intense spontaneous activity. Further, the control R ins were increased by ∼30–70% after TTX application in vivo, approaching in vitro values. In contrast, TTX produced negligible R in changes in vitro (∼4%). These results indicate that, compared with the in vitro situation, the background synaptic activity present in intact networks dramatically reduces the electrical compactness of cortical neurons and modifies their integrative properties. The impact of the spontaneous synaptic bombardment should be taken into account when extrapolating in vitro findings to the intact brain.


2008 ◽  
Vol 99 (3) ◽  
pp. 1394-1407 ◽  
Author(s):  
Sarah Potez ◽  
Matthew E. Larkum

Understanding the impact of active dendritic properties on network activity in vivo has so far been restricted to studies in anesthetized animals. However, to date no study has been made to determine the direct effect of the anesthetics themselves on dendritic properties. Here, we investigated the effects of three types of anesthetics commonly used for animal experiments (urethane, pentobarbital and ketamine/xylazine). We investigated the generation of calcium spikes, the propagation of action potentials (APs) along the apical dendrite and the somatic firing properties in the presence of anesthetics in vitro using dual somatodendritic whole cell recordings. Calcium spikes were evoked with dendritic current injection and high-frequency trains of APs at the soma. Surprisingly, we found that the direct actions of anesthetics on calcium spikes were very different. Two anesthetics (urethane and pentobarbital) suppressed dendritic calcium spikes in vitro, whereas a mixture of ketamine and xylazine enhanced them. Propagation of spikes along the dendrite was not significantly affected by any of the anesthetics but there were various changes in somatic firing properties that were highly dependent on the anesthetic. Last, we examined the effects of anesthetics on calcium spike initiation and duration in vivo using high-frequency trains of APs generated at the cell body. We found the same anesthetic-dependent direct effects in addition to an overall reduction in dendritic excitability in anesthetized rats with all three anesthetics compared with the slice preparation.


2007 ◽  
Vol 98 (3) ◽  
pp. 1791-1805 ◽  
Author(s):  
Masanori Murayama ◽  
Enrique Pérez-Garci ◽  
Hans-Rudolf Lüscher ◽  
Matthew E. Larkum

Calcium influx into the dendritic tufts of layer 5 neocortical pyramidal neurons modifies a number of important cellular mechanisms. It can trigger local synaptic plasticity and switch the firing properties from regular to burst firing. Due to methodological limitations, our knowledge about Ca2+ spikes in the dendritic tuft stems mostly from in vitro experiments. However, it has been speculated that regenerative Ca2+ events in the distal dendrites correlate with distinct behavioral states. Therefore it would be most desirable to be able to record these Ca2+ events in vivo, preferably in the behaving animal. Here, we present a novel approach for recording Ca2+ signals in the dendrites of populations of layer 5 pyramidal neurons in vivo, which ensures that all recorded fluorescence changes are due to intracellular Ca2+ signals in the apical dendrites. The method has two main features: 1) bolus loading of layer 5 with a membrane-permeant Ca2+ dye resulting in specific loading of pyramidal cell dendrites in the upper layers and 2) a fiberoptic cable attached to a gradient index lens and a prism reflecting light horizontally at 90° to the angle of the apical dendrites. We demonstrate that the in vivo signal-to-noise ratio recorded with this relatively inexpensive and easy-to-implement fiberoptic-based device is comparable to conventional camera-based imaging systems used in vitro. In addition, the device is flexible and lightweight and can be used for recording Ca2+ signals in the distal dendritic tuft of freely behaving animals.


2019 ◽  
Author(s):  
Yasunobu Murata ◽  
Matthew T. Colonnese

AbstractGABAergic interneurons are proposed to be critical for early activity and synapse formation by directly exciting, rather than inhibiting, neurons in developing hippocampus and neocortex. However, the role of GABAergic neurons in the generation of neonatal network activity has not been tested in vivo, and recent studies have challenged the excitatory nature of early GABA. By locally manipulating interneuron activity in unanesthetized neonatal mice, we show that GABAergic neurons are indeed excitatory in hippocampus at postnatal-day 3 (P3), and responsible for most of the spontaneous firing of pyramidal cells at that age. Hippocampal interneurons become inhibitory by P7, whereas cortical interneurons are inhibitory at P3 and remain so throughout development. This regional and age heterogeneity is the result of a change in chloride reversal potential as activation of light-gated anion channels expressed in glutamatergic neurons causes firing in hippocampus at P3, but silences it at P7. This study in the intact brain reveals a critical role for GABAergic interneuron excitation in neonatal hippocampus, and a surprising heterogeneity of interneuron function in cortical circuits that was not predicted from in vitro studies.


2000 ◽  
Vol 84 (6) ◽  
pp. 2799-2809 ◽  
Author(s):  
Darrell A. Henze ◽  
Guillermo R. González-Burgos ◽  
Nathaniel N. Urban ◽  
David A. Lewis ◽  
German Barrionuevo

Dopaminergic modulation of neuronal networks in the dorsolateral prefrontal cortex (PFC) is believed to play an important role in information processing during working memory tasks in both humans and nonhuman primates. To understand the basic cellular mechanisms that underlie these actions of dopamine (DA), we have investigated the influence of DA on the cellular properties of layer 3 pyramidal cells in area 46 of the macaque monkey PFC. Intracellular voltage recordings were obtained with sharp and whole cell patch-clamp electrodes in a PFC brain-slice preparation. All of the recorded neurons in layer 3 ( n = 86) exhibited regular spiking firing properties consistent with those of pyramidal neurons. We found that DA had no significant effects on resting membrane potential or input resistance of these cells. However DA, at concentrations as low as 0.5 μM, increased the excitability of PFC cells in response to depolarizing current steps injected at the soma. Enhanced excitability was associated with a hyperpolarizing shift in action potential threshold and a decreased first interspike interval. These effects required activation of D1-like but not D2-like receptors since they were inhibited by the D1 receptor antagonist SCH23390 (3 μM) but not significantly altered by the D2 antagonist sulpiride (2.5 μM). These results show, for the first time, that DA modulates the activity of layer 3 pyramidal neurons in area 46 of monkey dorsolateral PFC in vitro. Furthermore the results suggest that, by means of these effects alone, DA modulation would generally enhance the response of PFC pyramidal neurons to excitatory currents that reach the action potential initiation site.


2019 ◽  
Author(s):  
Maria Teleńczuk ◽  
Bartosz Teleńczuk ◽  
Alain Destexhe

AbstractSynaptic currents represent a major contribution to the local field potential (LFP) in brain tissue, but the respective contribution of excitatory and inhibitory synapses is not known. Here, we provide estimates of this contribution by using computational models of hippocampal pyramidal neurons, constrained by in vitro recordings. We focus on the unitary LFP (uLFP) generated by single neurons in the CA3 region of the hippocampus. We first reproduce experimental results for hippocampal basket cells, and in particular how inhibitory uLFP are distributed within hippocampal layers. Next, we calculate the uLFP generated by pyramidal neurons, using morphologically-reconstructed CA3 pyramidal cells. The model shows that the excitatory uLFP is of small amplitude, smaller than inhibitory uLFPs. Indeed, when the two are simulated together, inhibitory uLFPs mask excitatory uLFPs, which might create the illusion that the inhibitory field is generated by pyramidal cells. These results provide an explanation for the observation that excitatory and inhibitory uLFPs are of the same polarity, in vivo and in vitro. These results also show that somatic inhibitory currents are large contributors of the LFP, which is important information to interpret this signal. Finally, the results of our model might form the basis of a simple method to compute the LFP, which could be applied to point neurons for each cell type, thus providing a simple biologically-grounded method to calculate LFPs from neural networks.


1995 ◽  
Vol 74 (4) ◽  
pp. 1714-1729 ◽  
Author(s):  
M. Borde ◽  
J. R. Cazalets ◽  
W. Buno

1. A gradual and prolonged decrease of the response, termed here “depression”, evoked by repeated activation with transmembrane current stimuli was analyzed in rat CA1 hippocampal pyramidal cells under single-electrode current clamp by the use of the in vitro slice technique. 2. Depression was induced by 2-s duration 0.3- to 0.7-nA current pulses presented as a sequence of 12 stimuli at 3- to 60-s intervals. Sinusoidal currents (0.5-1.0 nA) at 5-Hz or 200-ms pulses repeated at 0.3-0.5/s, which may be more natural stimulations, also induced depression. 3. Depression outlasted stimulation up to 170 s in all cells tested. The initial high rate spike burst changed little (< 20%), whereas the lower rate adapted response decreased markedly (> 40%). Thus neurons increased their rate of adaptation. The afterhyperpolarizations following pulse-evoked responses increased in duration and amplitude with depression. There were input resistance (Rin) reductions at depolarized membrane potentials and during pulses. However, Rin reductions were considerably smaller or altogether absent late during interpulse intervals. Sub-threshold current stimuli were ineffective, indicating that spike activity was necessary to elicit depression. 4. Depression was 1) insensitive to the toxin omega-Agatoxin-IVA (omega-Aga-IVA; 0.5 microM), which blocked synaptic transmission, revealing a key involvement of intrinsic properties and little if any synaptic participation; 2) insensitive to 4-aminopyrydine (2.00-4.00 mM), which greatly enhanced excitatory and inhibitory synaptic efficacy, again suggesting little synaptic involvement and a principal postsynaptic participation, and no participation of the K(+)-mediated currents IA and ID; 3) abolished by carbamalcholine (5.0-20.0 microM)- an effect blocked by atropine (1.0-10.0 microM)- and reduced by Ca(2+)-free solutions, and by intracellular injection of the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), suggesting that Ca(2+)-dependent K(+)-mediated currents are key factors, with a less important participation of the K(+)-mediated IM current. 5. We conclude that depression was due to activity-dependent modifications in intrinsic properties, with little if any synaptic participation. Depression may be functionally significant because it was induced by potentially natural stimulations. A model is proposed that accounts for the main traits of depression. In the model, depression was induced by a gradual decline of the speed at which Ca2+ was buffered intracellularly; an increase in the IK(Ca)S activation rate constant also simulated depression.


2001 ◽  
Vol 86 (1) ◽  
pp. 1-39 ◽  
Author(s):  
M. Steriade

Data from in vivo and in vitro experiments are discussed to emphasize that synaptic activities in neocortex and thalamus have a decisive impact on intrinsic neuronal properties in intact-brain preparations under anesthesia and even more so during natural states of vigilance. Thus the firing patterns of cortical neuronal types are not inflexible but may change with the level of membrane potential and during periods rich in synaptic activity. The incidences of some cortical cell classes (defined by their responses to depolarizing current pulses) are different in isolated cortical slabs in vivo or in slices maintained in vitro compared with the intact cortex of naturally awake animals. Network activities, which include the actions of generalized modulatory systems, have a profound influence on the membrane potential, apparent input resistance, and backpropagation of action potentials. The analysis of various oscillatory types leads to the conclusion that in the intact brain, there are no “pure” rhythms, generated in simple circuits, but complex wave sequences (consisting of different, low- and fast-frequency oscillations) that result from synaptic interactions in corticocortical and corticothalamic neuronal loops under the control of activating systems arising in the brain stem core or forebrain structures. As an illustration, it is shown that the neocortex governs the synchronization of network or intrinsically generated oscillations in the thalamus. The rhythmic recurrence of spike bursts and spike trains fired by thalamic and cortical neurons during states of decreased vigilance may lead to plasticity processes in neocortical neurons. If these phenomena, which may contribute to the consolidation of memory traces, are not constrained by inhibitory processes, they induce seizures in which the neocortex initiates the paroxysms and controls their thalamic reflection. The results indicate that intact-brain preparations are necessary to investigate global brain functions such as behavioral states of vigilance and paroxysmal activities.


2008 ◽  
Vol 100 (6) ◽  
pp. 3030-3042 ◽  
Author(s):  
Steven A. Prescott ◽  
Stéphanie Ratté ◽  
Yves De Koninck ◽  
Terrence J. Sejnowski

During wakefulness, pyramidal neurons in the intact brain are bombarded by synaptic input that causes tonic depolarization, increased membrane conductance (i.e., shunting), and noisy fluctuations in membrane potential; by comparison, pyramidal neurons in acute slices typically experience little background input. Such differences in operating conditions can compromise extrapolation of in vitro data to explain neuronal operation in vivo. For instance, pyramidal neurons have been identified as integrators (i.e., class 1 neurons according to Hodgkin's classification of intrinsic excitability) based on in vitro experiments but that classification is inconsistent with the ability of hippocampal pyramidal neurons to oscillate/resonate at theta frequency since intrinsic oscillatory behavior is limited to class 2 neurons. Using long depolarizing stimuli and dynamic clamp to reproduce in vivo-like conditions in slice experiments, we show that CA1 hippocampal pyramidal cells switch from integrators to resonators, i.e., from class 1 to class 2 excitability. The switch is explained by increased outward current contributed by the M-type potassium current IM, which shifts the balance of inward and outward currents active at perithreshold potentials and thereby converts the spike-initiating mechanism as predicted by dynamical analysis of our computational model. Perithreshold activation of IM is enhanced by the depolarizing shift in spike threshold caused by shunting and/or sodium channel inactivation secondary to tonic depolarization. Our conclusions were validated by multiple comparisons between simulation and experimental data. Thus even so-called “intrinsic” properties may differ qualitatively between in vitro and in vivo conditions.


2005 ◽  
Vol 93 (2) ◽  
pp. 909-918 ◽  
Author(s):  
S. Canals ◽  
L. López-Aguado ◽  
O. Herreras

Dendritic voltage-dependent currents and inhibition modulate the information flow between synaptic and decision areas. Subthreshold and spike currents are sequentially recruited by synaptic potentials in the apical shaft of pyramidal cells, which may also decide cell output. We studied the global role of proximal apical recruited currents on cell output in vitro and in the anesthetized rat after local blockade of Na+ currents in the axon initial segment (AIS) or the proximal apical shaft and their modulation by inhibition. Microejection of TTX, field potentials, and intrasomatic and intradendritic recordings were employed. Dendritic population spikes (PSs) were much smaller in vitro, but the gross relations between synaptic and active currents are similar to in vivo. Activation of Schaffer collaterals triggered PSs and action potentials (APs) in the apical shaft that fully propagated to the axon. However, the specific blockade of proximal Na+ currents avoided cell firing, although antidromic PSs and APs readily invaded somata. The somatic depolarization of subthreshold excitatory postsynaptic potentials (EPSPs) also decreased to about 50%. These results were not due to decreased excitatory input by TTX. However, when GABAA inhibition was locally removed, Schaffer synaptic currents skipped the proximal dendrite and fired somatic PSs, although initiated at the AIS. It is concluded that apical currents recruited en passant by Schaffer synaptic potentials in the apical shaft constitute a necessary amplifier for this input to cause output decision. Local inhibition decides when and where an AP will initiate, constituting an efficient mechanism to discriminate and weight different inputs.


Sign in / Sign up

Export Citation Format

Share Document