La2Mo2O9-Based Electrolyte: Ion Conductivity and Anode-Supported Cell under Single Chamber Conditions

2010 ◽  
Vol 94 (3) ◽  
pp. 806-811 ◽  
Author(s):  
Jen-Chieh Lo ◽  
Dah-Shyang Tsai ◽  
Yu-Chen Chen ◽  
Minh-Vien Le ◽  
Wen-Hung Chung ◽  
...  
Author(s):  
Jose Luis Martinez-Sande ◽  
Javier Garcia-Seara ◽  
Laila Gonzalez-Melchor ◽  
Moises Rodriguez-Mañero ◽  
Aurora Baluja ◽  
...  

2021 ◽  
Author(s):  
Ruixue Zhang ◽  
Wanying Zhao ◽  
Zhenzhen Liu ◽  
Shanghai Wei ◽  
Yigang Yan ◽  
...  

In situ formed amorphous LiBH4·1/2NH3 on the surface of Al2O3 nanoparticles results in an enhanced ion conductivity of 1.1 × 10−3 S cm−1 at room temperature.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3790
Author(s):  
Yongzheng Ji ◽  
Tsuyoshi Honma ◽  
Takayuki Komatsu

Sodium super ionic conductor (NASICON)-type Na3Zr2Si2PO12 (NZSP) with the advantages of the high ionic conductivity, stability and safety is one of the most famous solid-state electrolytes. NZSP, however, requires the high sintering temperature about 1200 °C and long sintering time in the conventional solid-state reaction (SSR) method. In this study, the liquid-phase sintering (LPS) method was applied to synthesize NZSP with the use of NaPO3 glass with a low glass transition temperature of 292 °C. The formation of NZSP was confirmed by X-ray diffraction analyses in the samples obtained by the LPS method for the mixture of Na2ZrSi2O7, ZrO2, and NaPO3 glass. The sample sintered at 1000 °C for 10 h exhibited a higher Na+ ion conductivity of 1.81 mS/cm at 100 °C and a lower activation energy of 0.18 eV compared with the samples prepared by the SSR method. It is proposed that a new LPE method is effective for the synthesis of NZSP and the NaPO3 glass has a great contribution to the Na+ diffusion at the grain boundaries.


Sign in / Sign up

Export Citation Format

Share Document