scholarly journals Influence of temperature and soil water content on bacterial, archaeal and denitrifying microbial communities in drained fen grassland soil microcosms

2008 ◽  
Vol 66 (1) ◽  
pp. 110-122 ◽  
Author(s):  
Blaž Stres ◽  
TjaÅ¡a Danevčič ◽  
Levin Pal ◽  
Mirna Mrkonjić Fuka ◽  
Lara Resman ◽  
...  
2012 ◽  
Vol 26 (3) ◽  
pp. 259-269 ◽  
Author(s):  
M. Kočárek ◽  
R. Kodešová

Influence of temperature on soil water content measured by ECH2O-TE sensorsThe aim of this study was to investigate the influence of temperature on water content value measured by ECH2O-TE sensors. The influence of temperature on measured soil water content values was clearly demonstrated. Soil water content values measured during the day apparently oscillated with oscillating soil temperatures. Average daily temperature and soil water content were calculated for selected periods. Regression relationships between deviations of soil temperature and soil water content from their daily average values were evaluated. Correlation between the soil water content and temperature deviations increase with the soil depth due to the lower influence of rainfall and evaporation at the soil surface on measured soil water content values in deeper soil layersegsoil water content oscillation was controlled mostly by oscillating temperature. The guideline values of linear regression equations (R2>0.8) were very similar, close to value 0.002 and the intercept values were equal to zero. The equation for recalculation of measured soil water content values at given temperature to reference soil water content for reference soil temperature, was propozed on the basis of this analysis.


Soil Research ◽  
2019 ◽  
Vol 57 (4) ◽  
pp. 374 ◽  
Author(s):  
Tihana Vujinović ◽  
Timothy J. Clough ◽  
Denis Curtin ◽  
Esther D. Meenken ◽  
Niklas J. Lehto ◽  
...  

Soil rewetting can induce a flush of organic matter mineralisation, but the factors underpinning this mineralisation response are poorly understood. We investigated the effects of antecedent soil water content, before rewetting, on the quantity, quality and biodegradability of dissolved organic matter present in the leachate pore volumes from a soil under two different management histories: arable and grassland. Soils were collected at field capacity (FC) and dried to give four soil gravimetric water contents (θg): 22% (not dried, left at FC), 15%, 8% and <2% (air dry, AD). Soils were repacked to the same bulk density (1.1 g cm–3) and each core was sequentially leached, with four pore volumes collected. The total amount of dissolved organic carbon (DOC) leached increased (P < 0.001) only in the soils that had been air-dried before rewetting (3.8 and 5.3 mg g–1 soil C, for arable and grassland respectively), while among the other θg treatments differences were relatively small (1.6–2.4 mg g–1 soil C). The pre-rewetting θg treatment affected the DOC content of the pore volume leached (P < 0.001): in the grassland soil, the DOC of the AD treatment was consistently twice as high as the other θg treatments, but this trend was not as consistent in the arable soil. For all θg treatments and both soils, specific ultraviolet absorbance at 254 nm increased as leaching progressed. Biodegradability, expressed as cumulative CO2 produced per unit of DOC in leachates, was significantly lower in the first pore volume of all treatments in the grassland soil and increased with sequential leaching. In the arable soil, differences were small or insignificant across the pore volumes leached, but were large and inconsistent across the θg treatments. These findings improve our understanding of how antecedent soil water content affects the quantity and quality of dissolved organic matter released when soils are rewetted, and the potential for soil carbon losses.


Author(s):  
M.C.H.Mouat Pieter Nes

Reduction in water content of a soil increased the concentration of ammonium and nitrate in solution, but had no effect on the concentration of phosphate. The corresponding reduction in the quantity of phosphate in solution caused an equivalent reduction in the response of ryegrass to applied phosphate. Keywords: soil solution, soil water content, phosphate, ryegrass, nutrition.


2010 ◽  
Vol 59 (1) ◽  
pp. 157-164 ◽  
Author(s):  
E. Tóth ◽  
Cs. Farkas

Soil biological properties and CO2emission were compared in undisturbed grass and regularly disked rows of a peach plantation. Higher nutrient content and biological activity were found in the undisturbed, grass-covered rows. Significantly higher CO2fluxes were measured in this treatment at almost all the measurement times, in all the soil water content ranges, except the one in which the volumetric soil water content was higher than 45%. The obtained results indicated that in addition to the favourable effect of soil tillage on soil aeration, regular soil disturbance reduces soil microbial activity and soil CO2emission.


Author(s):  
Justyna Szerement ◽  
Aleksandra Woszczyk ◽  
Agnieszka Szyplowska ◽  
Marcin Kafarski ◽  
Arkadiusz Lewandowski ◽  
...  

2014 ◽  
Vol 22 (3) ◽  
pp. 300-307
Author(s):  
Meijun ZHANG ◽  
Wude YANG ◽  
Meichen FENG ◽  
Yun DUAN ◽  
Mingming TANG ◽  
...  

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 549f-550
Author(s):  
Mongi Zekri ◽  
Bruce Schaffer ◽  
Stephen K. O'Hair ◽  
Roberto Nunez-Elisea ◽  
Jonathan H. Crane

In southern Florida, most tropical fruit crops between Biscayne and Everglades National Parks are irrigated at rates and frequencies based on experience and observations of tree growth and fruit yield rather than on reliable quantitative information of actual water use. This approach suggests that irrigation rates may be excessive and could lead to leaching of agricultural chemicals into the groundwater in this environmentally sensitive area. Therefore, a study is being conducted to increase water use efficiency and optimize irrigation by accurately scheduling irrigation using a very effective management tool (EnviroScan, Sentek Environmental Innovations, Pty., Kent, Australia) that continuously monitors soil water content with highly accurate capacitance multi-sensor probes installed at several depths within the soil profile. The system measures crop water use by monitoring soil water depletion rates and allows the maintenance of soil water content within the optimum range (below field capacity and well above the onset of plant water stress). The study is being conducted in growers' orchards with three tropical fruit crops (avocado, carambola, and `Tahiti' lime) to facilitate rapid adoption and utilization of research results.


Sign in / Sign up

Export Citation Format

Share Document