scholarly journals Understanding microbial community diversity metrics derived from metagenomes: performance evaluation using simulated data sets

2012 ◽  
Vol 82 (1) ◽  
pp. 37-49 ◽  
Author(s):  
Germán Bonilla-Rosso ◽  
Luis E. Eguiarte ◽  
David Romero ◽  
Michael Travisano ◽  
Valeria Souza
Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 949
Author(s):  
Jiangyi Wang ◽  
Min Liu ◽  
Xinwu Zeng ◽  
Xiaoqiang Hua

Convolutional neural networks have powerful performances in many visual tasks because of their hierarchical structures and powerful feature extraction capabilities. SPD (symmetric positive definition) matrix is paid attention to in visual classification, because it has excellent ability to learn proper statistical representation and distinguish samples with different information. In this paper, a deep neural network signal detection method based on spectral convolution features is proposed. In this method, local features extracted from convolutional neural network are used to construct the SPD matrix, and a deep learning algorithm for the SPD matrix is used to detect target signals. Feature maps extracted by two kinds of convolutional neural network models are applied in this study. Based on this method, signal detection has become a binary classification problem of signals in samples. In order to prove the availability and superiority of this method, simulated and semi-physical simulated data sets are used. The results show that, under low SCR (signal-to-clutter ratio), compared with the spectral signal detection method based on the deep neural network, this method can obtain a gain of 0.5–2 dB on simulated data sets and semi-physical simulated data sets.


2017 ◽  
Vol 75 (1) ◽  
pp. 193-203 ◽  
Author(s):  
Vincent Scola ◽  
Jean-Baptiste Ramond ◽  
Aline Frossard ◽  
Olivier Zablocki ◽  
Evelien M. Adriaenssens ◽  
...  

2018 ◽  
Author(s):  
Michael Nute ◽  
Ehsan Saleh ◽  
Tandy Warnow

AbstractThe estimation of multiple sequence alignments of protein sequences is a basic step in many bioinformatics pipelines, including protein structure prediction, protein family identification, and phylogeny estimation. Statistical co-estimation of alignments and trees under stochastic models of sequence evolution has long been considered the most rigorous technique for estimating alignments and trees, but little is known about the accuracy of such methods on biological benchmarks. We report the results of an extensive study evaluating the most popular protein alignment methods as well as the statistical co-estimation method BAli-Phy on 1192 protein data sets from established benchmarks as well as on 120 simulated data sets. Our study (which used more than 230 CPU years for the BAli-Phy analyses alone) shows that BAli-Phy is dramatically more accurate than the other alignment methods on the simulated data sets, but is among the least accurate on the biological benchmarks. There are several potential causes for this discordance, including model misspecification, errors in the reference alignments, and conflicts between structural alignment and evolutionary alignments; future research is needed to understand the most likely explanation for our observations. multiple sequence alignment, BAli-Phy, protein sequences, structural alignment, homology


2021 ◽  
Vol 9 (1) ◽  
pp. 27-35
Author(s):  
Neelima Garg ◽  
Balvindra Singh ◽  
Supriya Vaish ◽  
Sanjay Kumar ◽  
Sanjay Arora

Sign in / Sign up

Export Citation Format

Share Document