scholarly journals Life cycle ofRickettsia slovacain L929 cell line studied by quantitative real-time PCR and transmission electron microscopy

2009 ◽  
Vol 293 (1) ◽  
pp. 102-106 ◽  
Author(s):  
Vojtech BoldiÅ¡ ◽  
Jasna Å trus ◽  
Elena Kocianová ◽  
Magda TuÅ¡ek-Žnidarič ◽  
Katarína Å tefanidesová ◽  
...  
Separations ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 8
Author(s):  
Kollur Shiva Prasad ◽  
Shashanka K Prasad ◽  
Ravindra Veerapur ◽  
Ghada Lamraoui ◽  
Ashwini Prasad ◽  
...  

Herein we report the synthesis of zinc oxide nanoparticles (ZnONPs) using Withania somnifera root extract (WSE) as an effective chelating agent. The microscopic techniques viz., X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED) were employed to analyze the as-obtained ZnONPs. The crystalline planes observed from the XRD pattern agrees with the hexagonal wurtzite structure of the as-prepared ZnONPs. The aggregations and agglomerations observed in the SEM images indicated that the size of the as-prepared ZnONPs was between 30 and 43 nm. The interplanar distance between the lattice fringes observed in the HRTEM image was found to be 0.253 nm, which is in good agreement with the (100) plane obtained in the XRD pattern. Furthermore, the anti-breast cancer cytotoxic evaluation was carried out using the MCF-7 cell line, and the results showed significant cytotoxic effects in a dose-dependent manner.


2018 ◽  
Vol 24 (6) ◽  
pp. 623-633 ◽  
Author(s):  
Xin Li ◽  
Ondrej Dyck ◽  
Sergei V. Kalinin ◽  
Stephen Jesse

AbstractScanning transmission electron microscopy (STEM) has become the main stay for materials characterization on atomic level, with applications ranging from visualization of localized and extended defects to mapping order parameter fields. In recent years, attention has focused on the potential of STEM to explore beam induced chemical processes and especially manipulating atomic motion, enabling atom-by-atom fabrication. These applications, as well as traditional imaging of beam sensitive materials, necessitate increasing the dynamic range of STEM in imaging and manipulation modes, and increasing the absolute scanning speed which can be achieved by combining sparse sensing methods with nonrectangular scanning trajectories. Here we have developed a general method for real-time reconstruction of sparsely sampled images from high-speed, noninvasive and diverse scanning pathways, including spiral scan and Lissajous scan. This approach is demonstrated on both the synthetic data and experimental STEM data on the beam sensitive material graphene. This work opens the door for comprehensive investigation and optimal design of dose efficient scanning strategies and real-time adaptive inference and control of e-beam induced atomic fabrication.


Nanoscale ◽  
2019 ◽  
Vol 11 (25) ◽  
pp. 12242-12249
Author(s):  
Lukas Schlicker ◽  
Radian Popescu ◽  
Maged F. Bekheet ◽  
Andrew Doran ◽  
Dagmar Gerthsen ◽  
...  

This work clarifies the mechanism of the formation of hollow nanostructures (nanotubes and nanospheres) during the InOOH to rh-In2O3 transformation.


2005 ◽  
Vol 109 (7) ◽  
pp. 764-778 ◽  
Author(s):  
Uwe K. Simon ◽  
Robert Bauer ◽  
Danny Rioux ◽  
Marie Simard ◽  
Franz Oberwinkler

RSC Advances ◽  
2015 ◽  
Vol 5 (100) ◽  
pp. 82342-82345 ◽  
Author(s):  
Tae-Young Ahn ◽  
Seung-Pyo Hong ◽  
Seong-Il Kim ◽  
Young-Woon Kim

Real-time liquid-cell transmission electron microscopy was utilized to gain insight into the growth and dissolution of silver nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document