Calcium accumulation by glutamate receptor activation is involved in hippocampal cell damage after ischemia

1988 ◽  
Vol 78 (6) ◽  
pp. 529-536 ◽  
Author(s):  
H. Benveniste ◽  
M. B. Jørgensen ◽  
N. H. Diemer ◽  
A. J. Hansen
2019 ◽  
Vol 16 (1) ◽  
pp. 3-11
Author(s):  
Luisa Halbe ◽  
Abdelhaq Rami

Introduction: Endoplasmic reticulum (ER) stress induced the mobilization of two protein breakdown routes, the proteasomal- and autophagy-associated degradation. During ERassociated degradation, unfolded ER proteins are translocated to the cytosol where they are cleaved by the proteasome. When the accumulation of misfolded or unfolded proteins excels the ER capacity, autophagy can be activated in order to undertake the degradative machinery and to attenuate the ER stress. Autophagy is a mechanism by which macromolecules and defective organelles are included in autophagosomes and delivered to lysosomes for degradation and recycling of bioenergetics substrate. Materials and Methods: Autophagy upon ER stress serves initially as a protective mechanism, however when the stress is more pronounced the autophagic response will trigger cell death. Because autophagy could function as a double edged sword in cell viability, we examined the effects autophagy modulation on ER stress-induced cell death in HT22 murine hippocampal neuronal cells. We investigated the effects of both autophagy-inhibition by 3-methyladenine (3-MA) and autophagy-activation by trehalose on ER-stress induced damage in hippocampal HT22 neurons. We evaluated the expression of ER stress- and autophagy-sensors as well as the neuronal viability. Results and Conclusion: Based on our findings, we conclude that under ER-stress conditions, inhibition of autophagy exacerbates cell damage and induction of autophagy by trehalose failed to be neuroprotective.


2013 ◽  
Vol 210 (12) ◽  
pp. 2553-2567 ◽  
Author(s):  
Christine D. Pozniak ◽  
Arundhati Sengupta Ghosh ◽  
Alvin Gogineni ◽  
Jesse E. Hanson ◽  
Seung-Hye Lee ◽  
...  

Excessive glutamate signaling is thought to underlie neurodegeneration in multiple contexts, yet the pro-degenerative signaling pathways downstream of glutamate receptor activation are not well defined. We show that dual leucine zipper kinase (DLK) is essential for excitotoxicity-induced degeneration of neurons in vivo. In mature neurons, DLK is present in the synapse and interacts with multiple known postsynaptic density proteins including the scaffolding protein PSD-95. To examine DLK function in the adult, DLK-inducible knockout mice were generated through Tamoxifen-induced activation of Cre-ERT in mice containing a floxed DLK allele, which circumvents the neonatal lethality associated with germline deletion. DLK-inducible knockouts displayed a modest increase in basal synaptic transmission but had an attenuation of the JNK/c-Jun stress response pathway activation and significantly reduced neuronal degeneration after kainic acid–induced seizures. Together, these data demonstrate that DLK is a critical upstream regulator of JNK-mediated neurodegeneration downstream of glutamate receptor hyper-activation and represents an attractive target for the treatment of indications where excitotoxicity is a primary driver of neuronal loss.


1989 ◽  
Vol 102 (1) ◽  
pp. 64-69 ◽  
Author(s):  
Nieves Menéndez ◽  
Oscar Herreras ◽  
JoséM. Solis ◽  
Antonio S. Herranz ◽  
Rafael Martín del Río

Neuroscience ◽  
1997 ◽  
Vol 78 (4) ◽  
pp. 1203-1208 ◽  
Author(s):  
G Queiroz ◽  
P.J Gebicke-Haerter ◽  
A Schobert ◽  
K Starke ◽  
I von Kügelgen

Sign in / Sign up

Export Citation Format

Share Document