Inhibition of Autophagy Potentiated Hippocampal Cell Death Induced by Endoplasmic Reticulum Stress and its Activation by Trehalose Failed to be Neuroprotective

2019 ◽  
Vol 16 (1) ◽  
pp. 3-11
Author(s):  
Luisa Halbe ◽  
Abdelhaq Rami

Introduction: Endoplasmic reticulum (ER) stress induced the mobilization of two protein breakdown routes, the proteasomal- and autophagy-associated degradation. During ERassociated degradation, unfolded ER proteins are translocated to the cytosol where they are cleaved by the proteasome. When the accumulation of misfolded or unfolded proteins excels the ER capacity, autophagy can be activated in order to undertake the degradative machinery and to attenuate the ER stress. Autophagy is a mechanism by which macromolecules and defective organelles are included in autophagosomes and delivered to lysosomes for degradation and recycling of bioenergetics substrate. Materials and Methods: Autophagy upon ER stress serves initially as a protective mechanism, however when the stress is more pronounced the autophagic response will trigger cell death. Because autophagy could function as a double edged sword in cell viability, we examined the effects autophagy modulation on ER stress-induced cell death in HT22 murine hippocampal neuronal cells. We investigated the effects of both autophagy-inhibition by 3-methyladenine (3-MA) and autophagy-activation by trehalose on ER-stress induced damage in hippocampal HT22 neurons. We evaluated the expression of ER stress- and autophagy-sensors as well as the neuronal viability. Results and Conclusion: Based on our findings, we conclude that under ER-stress conditions, inhibition of autophagy exacerbates cell damage and induction of autophagy by trehalose failed to be neuroprotective.

2006 ◽  
Vol 27 (5) ◽  
pp. 1716-1729 ◽  
Author(s):  
Shinichi Kondo ◽  
Atsushi Saito ◽  
Shin-ichiro Hino ◽  
Tomohiko Murakami ◽  
Maiko Ogata ◽  
...  

ABSTRACT Endoplasmic reticulum (ER) stress transducers IRE1 (inositol requiring 1), PERK (PKR-like endoplasmic reticulum kinase), and ATF6 (activating transcription factor 6) are well known to transduce signals from the ER to the cytoplasm and nucleus when unfolded proteins accumulate in the ER. Recently, we identified OASIS (old astrocyte specifically induced substance) as a novel ER stress transducer expressed in astrocytes. We report here that BBF2H7 (BBF2 human homolog on chromosome 7), an ER-resident transmembrane protein with the bZIP domain in the cytoplasmic portion and structurally homologous to OASIS, is cleaved at the membrane in response to ER stress. The cleaved fragments of BBF2H7 translocate into the nucleus and can bind directly to cyclic AMP-responsive element sites to activate transcription of target genes. Interestingly, although BBF2H7 protein is not expressed under normal conditions, it is markedly induced at the translational level during ER stress, suggesting that BBF2H7 might contribute to only the late phase of unfolded protein response signaling. In a mouse model of focal brain ischemia, BBF2H7 protein is prominently induced in neurons in the peri-infarction region. Furthermore, in a neuroblastoma cell line, BBF2H7 overexpression suppresses ER stress-induced cell death, while small interfering RNA knockdown of BBF2H7 promotes ER stress-induced cell death. Taken together, our results suggest that BBF2H7 is a novel ER stress transducer and could play important roles in preventing accumulation of unfolded proteins in damaged neurons.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Rui Zhang ◽  
Jin Sook Kim ◽  
Kyoung Ah Kang ◽  
Mei Jing Piao ◽  
Ki Cheon Kim ◽  
...  

Endoplasmic reticulum stress-mediated apoptosis plays an important role in the destruction of pancreaticβ-cells and contributes to the development of type 1 diabetes. The present study examined the effect of KIOM-4, a mixture of four plant extracts, on streptozotocin- (STZ-) induced endoplasmic reticulum (ER) stress in rat pancreaticβ-cells (RINm5F). KIOM-4 was found to inhibit STZ-induced apoptotic cell death, confirmed by formation of apoptotic bodies and DNA fragmentation. STZ was found to induce the characteristics of ER stress; mitochondrial Ca2+overloading, enhanced ER staining, release of glucose-regulated protein 78 (GRP78), phosphorylation of RNA-dependent protein kinase (PKR) like ER kinase (PERK) and eukaryotic initiation factor-2α(eIF-2α), cleavage of activating transcription factor 6 (ATF6) and caspase 12, and upregulation of CCAAT/enhancer-binding protein-homologous protein (CHOP). However, KIOM-4 attenuated these changes induced by STZ. Furthermore, KIOM-4 suppressed apoptosis induced by STZ in CHOP downregulated cells using CHOP siRNA. These results suggest that KIOM-4 exhibits protective effects in STZ-induced pancreaticβ-cell damage, by interrupting the ER stress-mediated pathway.


2008 ◽  
Vol 19 (10) ◽  
pp. 4404-4420 ◽  
Author(s):  
Renée Guérin ◽  
Geneviève Arseneault ◽  
Stéphane Dumont ◽  
Luis A. Rokeach

Stress conditions affecting the functions of the endoplasmic reticulum (ER) cause the accumulation of unfolded proteins. ER stress is counteracted by the unfolded-protein response (UPR). However, under prolonged stress the UPR initiates a proapoptotic response. Mounting evidence indicate that the ER chaperone calnexin is involved in apoptosis caused by ER stress. Here, we report that overexpression of calnexin in Schizosaccharomyces pombe induces cell death with apoptosis markers. Cell death was partially dependent on the Ire1p ER-stress transducer. Apoptotic death caused by calnexin overexpression required its transmembrane domain (TM), and involved sequences on either side of the ER membrane. Apoptotic death caused by tunicamycin was dramatically reduced in a strain expressing endogenous levels of calnexin lacking its TM and cytosolic tail. This demonstrates the involvement of calnexin in apoptosis triggered by ER stress. A genetic screen identified the S. pombe homologue of the human antiapoptotic protein HMGB1 as a suppressor of apoptotic death due to calnexin overexpression. Remarkably, overexpression of human calnexin in S. pombe also provoked apoptotic death. Our results argue for the conservation of the role of calnexin in apoptosis triggered by ER stress, and validate S. pombe as a model to elucidate the mechanisms of calnexin-mediated cell death.


2021 ◽  
Vol 22 (3) ◽  
pp. 1215
Author(s):  
Mi Ho Jeong ◽  
Mi Seon Jeon ◽  
Ga Eun Kim ◽  
Ha Ryong Kim

Airway epithelial cell death contributes to the pathogenesis of lung fibrosis. Polyhexamethylene guanidine phosphate (PHMG-p), commonly used as a disinfectant, has been shown to be strongly associated with lung fibrosis in epidemiological and toxicological studies. However, the molecular mechanism underlying PHMG-p-induced epithelial cell death is currently unclear. We synthesized a PHMG-p–fluorescein isothiocyanate (FITC) conjugate and assessed its uptake into lung epithelial A549 cells. To examine intracellular localization, the cells were treated with PHMG-p–FITC; then, the cytoplasmic organelles were counterstained and observed with confocal microscopy. Additionally, the organelle-specific cell death pathway was investigated in cells treated with PHMG-p. PHMG-p–FITC co-localized with the endoplasmic reticulum (ER), and PHMG-p induced ER stress in A549 cells and mice. The ER stress inhibitor tauroursodeoxycholic acid (TUDCA) was used as a pre-treatment to verify the role of ER stress in PHMG-p-induced cytotoxicity. The cells treated with PHMG-p showed apoptosis, which was inhibited by TUDCA. Our results indicate that PHMG-p is rapidly located in the ER and causes ER-stress-mediated apoptosis, which is an initial step in PHMG-p-induced lung fibrosis.


2008 ◽  
Vol 233 (10) ◽  
pp. 1289-1300 ◽  
Author(s):  
Peng Zhao ◽  
Xiaoyan Xiao ◽  
Agnes S. Kim ◽  
M. Fatima Leite ◽  
Jinxia Xu ◽  
...  

The endoplasmic reticulum (ER) is exquisitely sensitive to changes in its internal environment. Various conditions, collectively termed “ER stress”, can perturb ER function, leading to the activation of a complex response known as the unfolded protein response (UPR). Although c-Jun N-terminal kinase (JNK) activation is nearly always associated with cell death by various stimuli, the functional role of JNK in ER stress-induced cell death remains unclear. JNK regulates gene expression through the phosphorylation and activation of transcription factors, such as c-Jun. Here, we investigated the role of c-Jun in the regulation of ER stress-related genes. c-Jun expression levels determined the response of mouse fibroblasts to ER stress induced by thapsigargin (TG, an inhibitor of sarco/endoplasmic reticulum Ca2+ ATPase). c-jun−/− mouse fibroblast cells were more sensitive to TG-induced cell death compared to wild-type mouse fibroblasts, while reconstitution of c-Jun expression in c-jun−/− cells (c-Jun Re) enhanced resistance to TG-induced cell death. The expression levels of ER chaperones Grp78 and Gadd153 induced by TG were lower in c-Jun Re than in c-jun−/− cells. Moreover, TG treatment significantly increased calcineurin activity in c-jun−/− cells, but not in c-Jun Re cells. In c-Jun Re cells, TG induced the expression of Adapt78, also known as the Down syndrome critical region 1 (DSCR1), which is known to block calcineurin activity. Taken together, our findings suggest that c-Jun, a transcription factor downstream of the JNK signaling pathway, up-regulates Adapt78 expression in response to TG-induced ER stress and contributes to protection against TG-induced cell death.


2021 ◽  
pp. 1-29
Author(s):  
Jia Lin ◽  
Feifei Huang ◽  
Tianzeng Liang ◽  
Qin Qin ◽  
Qiao Xu ◽  
...  

Abstract This study assessed the molecular mechanism of eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) protection against IPEC-1 cell damage induced by deoxynivalenol (DON). The cells were divided into six groups, including the CON group, the EPA group, the DHA group, the DON group, the EPA+DON group, and the DHA+DON group. RNA sequencing was used to investigate the potential mechanism, and qRT-PCR was employed to verify the expression of selected genes. Changes in ultrastructure were used to estimate pathological changes and endoplasmic reticulum (ER) injury in IPEC-1 cells. Transferrin receptor 1 (TFR1) was tested by ELISA. Fe2+ and malondialdehyde (MDA) contents were estimated by spectrophotometry, and reactive oxygen species (ROS) was assayed by fluorospectrophotometry. RNA sequencing analysis showed that EPA and DHA had a significant effect on the expression of genes involved in ER stress and iron balance during DON-induced cell injury. The results showed that DON increased ER damage, the content of MDA and ROS, the ratio of X-box binding protein 1s (XBP-1s)/X-box binding protein 1u (XBP-1u), the concentration of Fe2+, and the activity of TFR1. However, the results also showed that EPA and DHA decreased the ratio of XBP-1s/XBP-1u to relieve DON-induced ER damage of IPEC-1 cells. Moreover, EPA and DHA (especially DHA) reversed the factors related to iron balance. It can be concluded that EPA and DHA reversed IPEC-1 cell damage induced by DON. DHA has the potential to protect IPEC-1 cells from DON-induced iron imbalance by inhibiting ER stress.


2020 ◽  
Author(s):  
Constanza Feliziani ◽  
Gonzalo Quasollo ◽  
Deborah Holstein ◽  
Macarena Fernandez ◽  
James C Paton ◽  
...  

AbstractThe accumulation of unfolded proteins within the Endoplasmic Reticulum (ER) activates a signal transduction pathway termed the unfolded protein response (UPR), which attempts to restore ER homeostasis. If homeostasis cannot be restored, UPR signalling ultimately induces apoptosis. Ca2+ depletion in the ER is a potent inducer of ER stress. Despite the ubiquity of Ca2+ as intracellular messenger, the precise mechanism (s) by which Ca2+ release affects the UPR remains unknown. Use of a genetically encoded Ca2+ indicator (GCamP6) that is tethered to the ER membrane, uncovered novel Ca2+ signalling events initiated by Ca2+ microdomains in human astrocytes under ER stress, as well as in a cell model deficient in all three IP3 Receptor isoforms. Pharmacological and molecular studies indicate that these local events are mediated by translocons. Together, these data reveal the existence of a previously unrecognized mechanism by which stressor-mediated Ca2+ release regulates ER stress.


2004 ◽  
Vol 15 (6) ◽  
pp. 2537-2548 ◽  
Author(s):  
Satomi Nadanaka ◽  
Hiderou Yoshida ◽  
Fumi Kano ◽  
Masayuki Murata ◽  
Kazutoshi Mori

Newly synthesized secretory and transmembrane proteins are folded and assembled in the endoplasmic reticulum (ER) where an efficient quality control system operates so that only correctly folded molecules are allowed to move along the secretory pathway. The productive folding process in the ER has been thought to be supported by the unfolded protein response (UPR), which is activated by the accumulation of unfolded proteins in the ER. However, a dilemma has emerged; activation of ATF6, a key regulator of mammalian UPR, requires intracellular transport from the ER to the Golgi apparatus. This suggests that unfolded proteins might be leaked from the ER together with ATF6 in response to ER stress, exhibiting proteotoxicity in the secretory pathway. We show here that ATF6 and correctly folded proteins are transported to the Golgi apparatus via the same route and by the same mechanism under conditions of ER stress, whereas unfolded proteins are retained in the ER. Thus, activation of the UPR is compatible with the quality control in the ER and the ER possesses a remarkable ability to select proteins to be transported in mammalian cells in marked contrast to yeast cells, which actively utilize intracellular traffic to deal with unfolded proteins accumulated in the ER.


Sign in / Sign up

Export Citation Format

Share Document