Presence of virion protein x (Vpx) of simian immunodeficiency virus SIVmac 251 in target cells in vivo

1995 ◽  
Vol 24 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Yury Persidsky ◽  
Vladimir Liska ◽  
Thierry Huss ◽  
Jean-Louis Gendrault ◽  
Alain Venet ◽  
...  
2000 ◽  
Vol 74 (20) ◽  
pp. 9388-9395 ◽  
Author(s):  
Simoy Goldstein ◽  
Charles R. Brown ◽  
Houman Dehghani ◽  
Jeffrey D. Lifson ◽  
Vanessa M. Hirsch

ABSTRACT Previous studies with simian immunodeficiency virus (SIV) infection of rhesus macaques suggested that the intrinsic susceptibility of peripheral blood mononuclear cells (PBMC) to infection with SIV in vitro was predictive of relative viremia after SIV challenge. The present study was conducted to evaluate this parameter in a well-characterized cohort of six rhesus macaques selected for marked differences in susceptibility to SIV infection in vitro. Rank order relative susceptibility of PBMC to SIVsmE543-3-infection in vitro was maintained over a 1-year period of evaluation. Differential susceptibility of different donors was maintained in CD8+T-cell-depleted PBMC, macrophages, and CD4+ T-cell lines derived by transformation of PBMC with herpesvirus saimiri, suggesting that this phenomenon is an intrinsic property of CD4+target cells. Following intravenous infection of these macaques with SIVsmE543-3, we observed a wide range in plasma viremia which followed the same rank order as the relative susceptibility established by in vitro studies. A significant correlation was observed between plasma viremia at 2 and 8 weeks postinoculation and in vitro susceptibility (P < 0.05). The observation that the two most susceptible macaques were seropositive for simian T-lymphotropic virus type 1 may suggests a role for this viral infection in enhancing susceptibility to SIV infection in vitro and in vivo. In summary, intrinsic susceptibility of CD4+ target cells appears to be an important factor influencing early virus replication patterns in vivo that should be considered in the design and interpretation of vaccine studies using the SIV/macaque model.


2007 ◽  
Vol 81 (21) ◽  
pp. 11982-11991 ◽  
Author(s):  
Judith N. Mandl ◽  
Roland R. Regoes ◽  
David A. Garber ◽  
Mark B. Feinberg

ABSTRACT Antiviral CD8+ T cells are thought to play a significant role in limiting the viremia of human and simian immunodeficiency virus (HIV and SIV, respectively) infections. However, it has not been possible to measure the in vivo effectiveness of cytotoxic T cells (CTLs), and hence their contribution to the death rate of CD4+ T cells is unknown. Here, we estimated the ability of a prototypic antigen-specific CTL response against a well-characterized epitope to recognize and kill infected target cells by monitoring the immunodominant Mamu-A*01-restricted Tat SL8 epitope for escape from Tat-specific CTLs in SIVmac239-infected macaques. Fitting a mathematical model that incorporates the temporal kinetics of specific CTLs to the frequency of Tat SL8 escape mutants during acute SIV infection allowed us to estimate the in vivo killing rate constant per Tat SL8-specific CTL. Using this unique data set, we show that at least during acute SIV infection, certain antiviral CD8+ T cells can have a significant impact on shortening the longevity of infected CD4+ T cells and hence on suppressing virus replication. Unfortunately, due to viral escape from immune pressure and a dependency of the effectiveness of antiviral CD8+ T-cell responses on the availability of sufficient CD4+ T cells, the impressive early potency of the CTL response may wane in the transition to the chronic stage of the infection.


2002 ◽  
Vol 76 (8) ◽  
pp. 3981-3995 ◽  
Author(s):  
Marie-Chantal Simard ◽  
Pavel Chrobak ◽  
Denis G. Kay ◽  
Zaher Hanna ◽  
Serge Jothy ◽  
...  

ABSTRACT In order to study the functions of simian immunodeficiency virus (SIV) Nef in vivo in a small-animal model, we constructed transgenic (Tg) mice expressing the SIVmac239 nef gene in the natural target cells of the virus under the control of the human CD4 gene promoter (CD4C). These CD4C/SHIV-nef SIV Tg mice develop a severe AIDS-like disease, with manifestations including premature death, failure to thrive or weight loss, wasting, thymic atrophy, an especially low number of peripheral CD8+ T cells as well as a low number of peripheral CD4+ T cells, diarrhea, splenomegaly, and kidney (interstitial nephritis, segmental glomerulosclerosis), lung (lymphocytic interstitial pneumonitis), and heart disease. In addition, these Tg mice fail to mount a class-switched antibody response after immunization with ovalbumin, they produce anti-DNA autoantibodies, and some of them develop Pneumocystis carinii lung infections. All these results suggest a generalized Nef-induced immunodeficiency. The low numbers of peripheral CD8+ and CD4+ T cells are likely to reflect a thymic defect and may be similar to the DiGeorge-like “thymic defect” immunophenotype described for a subgroup of human immunodeficiency virus type 1-infected children. Therefore, it appears that SIV Nef alone expressed in mice, in appropriate cell types and at sufficient levels, can elicit many of the phenotypes of simian and human AIDS. These Tg mice should be instrumental in studying the pathogenesis of SIV Nef-induced phenotypes.


2017 ◽  
Vol 91 (19) ◽  
Author(s):  
James M. Termini ◽  
Elizabeth S. Church ◽  
Zachary A. Silver ◽  
Stuart M. Haslam ◽  
Anne Dell ◽  
...  

ABSTRACT A highly conserved threonine near the C terminus of gp120 of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) was investigated for its contributions to envelope protein function and virion infectivity. When this highly conserved Thr residue was substituted with anything other than serine (the other amino acid that can accept O-glycosylation), the resulting virus was noninfectious. We found that this Thr was critical for the association of gp120 with the virion and that amino acid substitution increased the amount of dissociated gp120 in the cell culture supernatant. When HIV virions were generated in cells overexpressing polypeptide N-acetylgalactosaminyltransferase 1 (GalNAcT1), viral infectivity was increased 2.5-fold compared to that of virus produced in wild-type HEK293T cells; infectivity was increased 8-fold when the Thr499Ser mutant was used. These infectivity enhancements were not observed when GalNAcT3 was used. Using HEK293T knockout cell lines totally devoid of the ability to perform O-linked glycosylation, we demonstrated production of normal levels of virions and normal levels of infectivity in the complete absence of O-linked carbohydrate. Our data indicate that O-glycosylation is not necessary for the natural replication cycle of HIV and SIV. Nonetheless, it remains theoretically possible that the repertoire of GalNAc transferase isoforms in natural target cells for HIV and SIV in vivo could result in O-glycosylation of the threonine residue in question and that this could boost the infectivity of virions beyond the levels seen in the absence of such O-glycosylation. IMPORTANCE Approximately 50% of the mass of the gp120 envelope glycoprotein of both HIV and SIV is N-linked carbohydrate. One of the contributions of this N-linked carbohydrate is to shield conserved peptide sequences from recognition by humoral immunity. This N-linked glycosylation is one of the reasons that primary isolates of HIV and SIV are so heavily resistant to antibody-mediated neutralization. Much less studied is any potential contribution from O-linked glycosylation. The literature on this topic to date is somewhat confusing and ambiguous. Our studies described in this report demonstrate unambiguously that O-linked glycosylation is not necessary for the natural replication cycle of HIV and SIV. However, the door is not totally closed because of the diversity of numerous GalNAc transferase enzymes that initiate O-linked carbohydrate attachment and the theoretical possibility that natural target cells for HIV and SIV in vivo could potentially complete such O-linked carbohydrate attachment to further increase infectivity.


2008 ◽  
Vol 82 (13) ◽  
pp. 6591-6599 ◽  
Author(s):  
Zandrea Ambrose ◽  
Lara Compton ◽  
Michael Piatak ◽  
Ding Lu ◽  
W. Gregory Alvord ◽  
...  

ABSTRACT The rising prevalence of human immunodeficiency virus type 1 (HIV-1) infection in women, especially in resource-limited settings, accentuates the need for accessible, inexpensive, and female-controlled preexposure prophylaxis strategies to prevent mucosal transmission of the virus. While many compounds can inactivate HIV-1 in vitro, evaluation in animal models for mucosal transmission of virus may help identify which approaches will be effective in vivo. Macaques challenged intravaginally with pathogenic simian immunodeficiency virus (SIVmac251) provide a model to preclinically evaluate candidate microbicides. 2-Hydroxypropyl-β-cyclodextrin (BCD) prevents HIV-1 and SIV infection of target cells at subtoxic doses in vitro. Consistent with these findings, intravaginal challenge of macaques with SIVmac251 preincubated with BCD prevented mucosal transmission, as measured by plasma viremia and antiviral antibodies, through 10 weeks postchallenge. In an initial challenge, BCD applied topically prior to SIVmac251 prevented intravaginal transmission of virus compared to controls (P < 0.0001). However, upon a second virus challenge following BCD pretreatment, the majority of the previously protected animals became infected. The mechanism through which animals become infected at a frequency similar to that of controls after prior exposure to BCD and SIVmac251 in subsequent intravaginal virus challenges (P = 0.63), despite the potent antiviral properties of BCD, remains to be determined. These results highlight the unpredictability of antiviral compounds as topical microbicides and suggest that repeated exposures to candidate treatments should be considered for in vivo evaluation.


2011 ◽  
Vol 85 (23) ◽  
pp. 12804-12810 ◽  
Author(s):  
P. A. Mudd ◽  
A. J. Ericsen ◽  
A. D. Walsh ◽  
E. J. Leon ◽  
N. A. Wilson ◽  
...  

2001 ◽  
Vol 75 (19) ◽  
pp. 9328-9338 ◽  
Author(s):  
Lennart Holterman ◽  
Rob Dubbes ◽  
James Mullins ◽  
Gerald Learn ◽  
Henk Niphuis ◽  
...  

ABSTRACT End-stage simian immunodeficiency virus (SIV) isolates are suggested to be the most fit of the evolved virulent variants that precipitate the progression to AIDS. To determine if there were common characteristics of end-stage variants which emerge from accelerated cases of AIDS, a molecular clone was derived directly from serum following in vivo selection of a highly virulent SIV isolate obtained by serial end-stage passage in rhesus monkeys (Macaca mulatta). This dominant variant caused a marked cytopathic effect and replicated to very high levels in activated but not resting peripheral blood lymphocytes. Furthermore, although this clone infected but did not replicate to detectable levels in rhesus monocyte-derived macrophages, these cells were able to transmit infection to autologous T cells upon contact. Interestingly, although at low doses this end-stage variant did not use any of the known coreceptors except CCR5, it was able to infect and replicate in human peripheral blood mononuclear cells homozygous for the Δ32 deletion of CCR5, suggesting the use of a novel coreceptor. It represents the first pathogenic molecular clone of SIV derived from viral RNA in serum and provides evidence that not only the genetic but also the biological characteristics acquired by highly fit late-stage disease variants may be distinct in different hosts.


2012 ◽  
Vol 86 (18) ◽  
pp. 9583-9589 ◽  
Author(s):  
Kathryn E. Stephenson ◽  
Hualin Li ◽  
Bruce D. Walker ◽  
Nelson L. Michael ◽  
Dan H. Barouch

A comprehensive vaccine for human immunodeficiency virus type 1 (HIV-1) would block HIV-1 acquisition as well as durably control viral replication in breakthrough infections. Recent studies have demonstrated that Env is required for a vaccine to protect against acquisition of simian immunodeficiency virus (SIV) in vaccinated rhesus monkeys, but the antigen requirements for virologic control remain unclear. Here, we investigate whether CD8+T lymphocytes from vaccinated rhesus monkeys mediate viral inhibitionin vitroand whether these responses predict virologic control following SIV challenge. We observed that CD8+lymphocytes from 23 vaccinated rhesus monkeys inhibited replication of SIVin vitro. Moreover, the magnitude of inhibition prior to challenge was inversely correlated with set point SIV plasma viral loads after challenge. In addition, CD8 cell-mediated viral inhibition in vaccinated rhesus monkeys correlated significantly with Gag-specific, but not Pol- or Env-specific, CD4+and CD8+T lymphocyte responses. These findings demonstrate thatin vitroviral inhibition following vaccination largely reflects Gag-specific cellular immune responses and correlates within vivovirologic control following infection. These data suggest the importance of including Gag in an HIV-1 vaccine in which virologic control is desired.


2015 ◽  
Vol 89 (7) ◽  
pp. 4030-4034 ◽  
Author(s):  
Véronique Barateau ◽  
Xuan-Nhi Nguyen ◽  
Fanny Bourguillault ◽  
Grégory Berger ◽  
Stéphanie Cordeil ◽  
...  

The block toward human immunodeficiency virus type 1 (HIV-1) infection of dendritic cells (DCs) can be relieved by Vpx (viral protein X), which degrades sterile alpha motif-hydroxylase domain 1 (SAMHD1) or by exogenously added deoxynucleosides (dNs), lending support to the hypothesis that SAMHD1 acts by limiting deoxynucleoside triphosphates (dNTPs). This notion has, however, been questioned. We show that while dNs and Vpx increase the infectivity of HIV-1, only the latter restores the infectivity of a simian immunodeficiency virus of macaques variant, SIVMACΔVpx virus. This distinct behavior seems to map to CA, suggesting that species-specific CA interactors modulate infection of DCs.


Sign in / Sign up

Export Citation Format

Share Document