Species presence/absence sometimes represents a plant community as well as species abundances do, or better

2012 ◽  
Vol 23 (6) ◽  
pp. 1013-1023 ◽  
Author(s):  
J. Bastow Wilson
2019 ◽  
Vol 16 (159) ◽  
pp. 20190553 ◽  
Author(s):  
M. J. Palazzi ◽  
J. Borge-Holthoefer ◽  
C. J. Tessone ◽  
A. Solé-Ribalta

Identifying and explaining the structure of complex networks at different scales has become an important problem across disciplines. At the mesoscale, modular architecture has attracted most of the attention. At the macroscale, other arrangements—e.g. nestedness or core–periphery—have been studied in parallel, but to a much lesser extent. However, empirical evidence increasingly suggests that characterizing a network with a unique pattern typology may be too simplistic, since a system can integrate properties from distinct organizations at different scales. Here, we explore the relationship between some of these different organizational patterns: two at the mesoscale (modularity and in-block nestedness); and one at the macroscale (nestedness). We show experimentally and analytically that nestedness imposes bounds to modularity, with exact analytical results in idealized scenarios. Specifically, we show that nestedness and modularity are interdependent. Furthermore, we analytically evidence that in-block nestedness provides a natural combination between nested and modular networks, taking structural properties of both. Far from a mere theoretical exercise, understanding the boundaries that discriminate each architecture is fundamental, to the extent that modularity and nestedness are known to place heavy dynamical effects on processes, such as species abundances and stability in ecology.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6148 ◽  
Author(s):  
Ana Paola Martínez-Falcón ◽  
Gustavo A. Zurita ◽  
Ilse J. Ortega-Martínez ◽  
Claudia E. Moreno

Edge effects alter insect biodiversity in several ways. However, we still have a limited understanding on simultaneous responses of ecological populations and assemblages to ecotones, especially in human modified landscapes. We analyze edge effects on dung beetle populations and assemblages between livestock pastures and native temperate forests (Juniperusand pine-oak forests (POFs)) to describe how species abundances and assemblage parameters respond to edge effects through gradients in forest-pasture ecotones. InJuniperusforest 13 species avoided the ecotones: six species showed greater abundance in forest interior and seven in pasturelands, while the other two species had a neutral response to the edge. In a different way, in POF we found five species avoiding the edge (four with greater abundance in pastures and only one in forest), two species had a neutral response, and two showed a unimodal pattern of abundance near to the edge. At the assemblage level edge effects are masked, as species richness, diversity, functional richness, functional evenness, and compositional incidence dissimilarity did not vary along forest-pasture ecotones. However, total abundance and functional divergence showed higher values in pastures in one of the two sampling localities. Also, assemblage similarity based on species’ abundance showed a peak near to the edge in POF. We propose that conservation efforts in human-managed landscapes should focus on mitigating current and delayed edge effects. Ecotone management will be crucial in livestock dominated landscapes to conserve regional biodiversity and the environmental services carried out by dung beetles.


2018 ◽  
Author(s):  
I. Bartomeus ◽  
J.R. Stavert ◽  
D. Ward ◽  
O. Aguado

AbstractThere is increasing concern about the decline of pollinators worldwide. However, despite reports that pollinator declines are widespread, data are scarce and often geographically and taxonomically biased. These biases limit robust inference about any potential pollinator crisis. Non-structured and opportunistic historical specimen collection data provide the only source of historical information which can serve as a baseline for identifying pollinator declines. Specimens historically collected and preserved in museums not only provide information on where and when species were collected, but also contain other ecological information such as species interactions and morphological traits. Here, we provide a synthesis of how researchers have used historical data to identify long-term changes in biodiversity, species abundances, morphology and pollination services. Despite recent advances, we show that information on the status and trends of most pollinators is absent, but we highlight opportunities and limitations to progress the assessment of pollinator declines globally. Finally, we demonstrate different approaches to analysing museum collection data using two contrasting case studies from distinct geographical regions (New Zealand and Spain) for which long-term pollinator declines have never been assessed. There is immense potential for museum specimens to play a central role in assessing the extent of the global pollination crisis.


Diversity ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 248
Author(s):  
Celestino Quintela-Sabarís ◽  
Michel-Pierre Faucon ◽  
Rimi Repin ◽  
John B. Sugau ◽  
Reuben Nilus ◽  
...  

Biodiversity-rich tropical ultramafic areas are currently being impacted by land clearing and particularly by mine activities. The reclamation of ultramafic degraded areas requires a knowledge of pioneer plant species. The objective of this study is to highlight the functional traits of plants that colonize ultramafic areas after disturbance by fire or mining activities. This information will allow trait-assisted selection of candidate species for reclamation. Fifteen plots were established on ultramafic soils in Sabah (Borneo, Malaysia) disturbed by recurrent fires (FIRE plots) or by soil excavation and quarrying (MINE plots). In each plot, soil samples were collected and plant cover as well as species abundances were estimated. Fifteen functional traits related to revegetation, nutrient improvement, or Ni phytomining were measured in sampled plants. Vegetation of both FIRE and MINE plots was dominated by perennials with lateral spreading capacity (mainly by rhizomes). Plant communities displayed a conservative growth strategy, which is an adaptation to low nutrient availability on ultramafic soils. Plant height was higher in FIRE than in MINE plots, whereas the number of stems per plant was higher in MINE plots. Perennial plants with lateral spreading capacity and a conservative growth strategy would be the first choice for the reclamation of ultramafic degraded areas. Additional notes for increasing nutrient cycling, managing competition, and implementing of Ni-phytomining are also provided.


2018 ◽  
Vol 285 (1883) ◽  
pp. 20180659 ◽  
Author(s):  
A. E. Magurran ◽  
P. A. Henderson

To withstand the pressures of a rapidly changing world, resilient ecosystems should exhibit compensatory dynamics, including uncorrelated temporal shifts in population sizes. The observation that diversity is maintained through time in many systems is evidence that communities are indeed regulated and stabilized, yet empirical observations suggest that positive covariance in species abundances is widespread. This paradox could be resolved if communities are composed of a number of ecologically relevant sub-units in which the members compete for resources, but whose abundances fluctuate independently. Such modular organization could explain community regulation, even when the community as a whole appears synchronized. To test this hypothesis, we quantified temporal synchronicity in annual population abundances within spatial guilds in an estuarine fish assemblage that has been monitored for 36 years. We detected independent fluctuations in annual abundances within guilds. By contrast, the assemblage as a whole exhibited temporal synchronicity—an outcome linked to the dynamics of guild dominants, which were synchronized with each other. These findings underline the importance of modularity in explaining community regulation and highlight the need to protect assemblage composition and structure as well as species richness.


2019 ◽  
Author(s):  
Aaron Matthius Eger ◽  
Rebecca J. Best ◽  
Julia Kathleen Baum

Biodiversity and ecosystem function are often correlated, but there are multiple hypotheses about the mechanisms underlying this relationship. Ecosystem functions such as primary or secondary production may be maximized by species richness, evenness in species abundances, or the presence or dominance of species with certain traits. Here, we combined surveys of natural fish communities (conducted in July and August, 2016) with morphological trait data to examine relationships between diversity and ecosystem function (quantified as fish community biomass) across 14 subtidal eelgrass meadows in the Northeast Pacific (54° N 130° W). We employed both taxonomic and functional trait measures of diversity to investigate if ecosystem function is driven by species diversity (complementarity hypothesis) or by the presence or dominance of species with particular trait values (selection or dominance hypotheses). After controlling for environmental variation, we found that fish community biomass is maximized when taxonomic richness and functional evenness is low, and in communities dominated by species with particular trait values – those associated with benthic habitats and prey capture. While previous work on fish communities has found that species richness is positively correlated with ecosystem function, our results instead highlight the capacity for regionally prevalent and locally dominant species to drive ecosystem function in moderately diverse communities. We discuss these alternate links between community composition and ecosystem function and consider their divergent implications for ecosystem valuation and conservation prioritization.


2019 ◽  
Author(s):  
Coline Deveautour ◽  
Sally Power ◽  
Kirk Barnett ◽  
Raul Ochoa-Hueso ◽  
Suzanne Donn ◽  
...  

Climate models project overall a reduction in rainfall amounts and shifts in the timing of rainfall events in mid-latitudes and sub-tropical dry regions, which threatens the productivity and diversity of grasslands. Arbuscular mycorrhizal fungi may help plants to cope with expected changes but may also be impacted by changing rainfall, either via the direct effects of low soil moisture on survival and function or indirectly via changes in the plant community. In an Australian mesic grassland (former pasture) system, we characterised plant and arbuscular mycorrhizal (AM) fungal communities every six months for nearly four years to two altered rainfall regimes: i) ambient, ii) rainfall reduced by 50% relative to ambient over the entire year and iii) total summer rainfall exclusion. Using Illumina sequencing, we assessed the response of AM fungal communities sampled from contrasting rainfall treatments and evaluated whether variation in AM fungal communities was associated with variation in plant community richness and composition. We found that rainfall reduction influenced the fungal communities, with the nature of the response depending on the type of manipulation, but that consistent results were only observed after more than two years of rainfall manipulation. We observed significant co-associations between plant and AM fungal communities on multiple dates. Predictive co-correspondence analyses indicated more support for the hypothesis that fungal community composition influenced plant community composition than vice versa. However, we found no evidence that altered rainfall regimes were leading to distinct co-associations between plants and AM fungi. Overall, our results provide evidence that grassland plant communities are intricately tied to variation in AM fungal communities. However, in this system, plant responses to climate change may not be directly related to impacts of altered rainfall regimes on AM fungal communities. Our study shows that AM fungal communities respond to changes in rainfall but that this effect was not immediate. The AM fungal community may influence the composition of the plant community. However, our results suggest that plant responses to altered rainfall regimes at our site may not be resulting via changes in the AM fungal communities.


2015 ◽  
Vol 42 (2) ◽  
pp. 197-210 ◽  
Author(s):  
Laurence M. Cook

Joseph Sidebotham (1824–1885) was a Manchester cotton baron whose natural history collections are now in the Manchester Museum. In addition to collecting he suggested a method for identifying and classifying Lepidoptera and investigated variation within species as well as species limits. With three close collaborators, he is credited with discovering many species new to Britain in both Lepidoptera and Coleoptera. A suspicion of fraud attaches to these claims. The evidence is not clear-cut in the Lepidoptera, but a possible reason is suggested why Sidebotham, as an amateur in the increasingly professional scientific world, might have engaged in deceit.


Corpora ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 125-140
Author(s):  
Yukiko Ohashi ◽  
Noriaki Katagiri ◽  
Katsutoshi Oka ◽  
Michiko Hanada

This paper reports on two research results: ( 1) designing an English for Specific Purposes (esp) corpus architecture complete with annotations structured by regular expressions; and ( 2) a case study to test the design to cater for creating a specific vocabulary list using the compiled corpus. The first half of this study involved designing a precisely structured esp corpus from 190 veterinary medical charts with a hierarchy of the data. The data hierarchy in the corpus consists of document types, outline elements and inline elements, such as species and breed. Perl scripts extracted the data attached to veterinary-specific categories, and the extraction led to creating wordlists. The second part of the research tested the corpus mode, creating a list of commonly observed lexical items in veterinary medicine. The coverage rate of the wordlists by General Service List (gsl) and Academic Word List (awl) was tested, with the result that 66.4 percent of all lexical items appeared in gsl and awl, whereas 33.7 percent appeared in none of those lists. The corpus compilation procedures as well as the annotation scheme introduced in this study enable the compilation of specific corpora with explicit annotations, allowing teachers to have access to data required for creating esp classroom materials.


Sign in / Sign up

Export Citation Format

Share Document