IN-1130, a Novel Transforming Growth Factor-β Type I Receptor Kinase (Activin Receptor-like Kinase 5) Inhibitor, Promotes Regression of Fibrotic Plaque and Corrects Penile Curvature in a Rat Model of Peyronie's Disease

2009 ◽  
Vol 6 (5) ◽  
pp. 1284-1296 ◽  
Author(s):  
Ji-Kan Ryu ◽  
Shuguang Piao ◽  
Hwa-Yean Shin ◽  
Min Ji Choi ◽  
Lu Wei Zhang ◽  
...  
2002 ◽  
Vol 62 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Gareth J. Inman ◽  
Francisco J. Nicolás ◽  
James F. Callahan ◽  
John D. Harling ◽  
Laramie M. Gaster ◽  
...  

2007 ◽  
Vol 195 (1) ◽  
pp. 95-103 ◽  
Author(s):  
Nina Renlund ◽  
Francis H O’Neill ◽  
LiHua Zhang ◽  
Yisrael Sidis ◽  
Jose Teixeira

Activin receptor-like kinase-2 (Alk2) has been shown to be a promiscuous type I receptor for the transforming growth factor β (TGFβ) family of growth and differentiation factors, such as activin, bone morphogenetic proteins, and Müllerian inhibiting substance (MIS). We have studied the putative role of Alk2 in activin signaling using MA-10 cells, a mouse transformed Leydig cell line, in which endogenous expression of cytochrome P450 c17 hydroxylase/C17–20 lyase mRNA is inhibited by both MIS and activin A. Overexpression of Alk2 in MA-10 cells inhibited the activation of the activin-responsive CAGA-luciferase reporter and, conversely, transfection of siRNA for Alk2 increased the response. In contrast, overexpression of the MIS type II receptor in MA-10 cells increased the activin-mediated induction of CAGA-luciferase approximately fivefold, which we hypothesized occurs by MIS type II receptor sequestering endogenous Alk2. Binding experiments with 125I-labeled activin show that the underlying mechanism of Alk2-mediated inhibition of activin signaling involves Alk2 blocking the access of activin to its type II receptor, which we show can bind Alk2 in the absence of ligand. These results show that the complement of other type I receptors in addition to the ligand-specific type I receptor can provide an important mechanism for modulating cell-specific responses to members of the TGFβ family.


2016 ◽  
Vol 44 (4) ◽  
pp. 1142-1149 ◽  
Author(s):  
Amaya García de Vinuesa ◽  
Matteo Bocci ◽  
Kristian Pietras ◽  
Peter ten Dijke

Angiogenesis is a hallmark of cancer and is now a validated therapeutic target in the clinical setting. Despite the initial success, anti-angiogenic compounds impinging on the vascular endothelial growth factor (VEGF) pathway display limited survival benefits in patients and resistance often develops due to activation of alternative pathways. Thus, finding and validating new targets is highly warranted. Activin receptor-like kinase (ALK)1 is a transforming growth factor beta (TGF-β) type I receptor predominantly expressed in actively proliferating endothelial cells (ECs). ALK1 has been shown to play a pivotal role in regulating angiogenesis by binding to bone morphogenetic protein (BMP)9 and 10. Two main pharmacological inhibitors, an ALK1-Fc fusion protein (Dalantercept/ACE-041) and a fully human antibody against the extracellular domain of ALK1 (PF-03446962) are currently under clinical development. Herein, we briefly recapitulate the role of ALK1 in blood vessel formation and the current status of the preclinical and clinical studies on inhibition of ALK1 signalling as an anti-angiogenic strategy. Future directions in terms of new combination regimens will also be presented.


Sign in / Sign up

Export Citation Format

Share Document