scholarly journals X-ray pulsar radiation from polar caps heated by back-flow bombardment

2007 ◽  
Vol 376 (1) ◽  
pp. L67-L71 ◽  
Author(s):  
J. Gil ◽  
G. Melikidze ◽  
B. Zhang
Keyword(s):  
X Ray ◽  
Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 210
Author(s):  
Georgii K. Sizykh ◽  
Sergei P. Roshchupkin ◽  
Victor V. Dubov

The process of resonant high-energy electron–positron pairs production by electrons in an X-ray pulsar electromagnetic field is studied theoretically. Under the resonance conditions, the second-order process under consideration effectively reduces into two sequential first-order processes: X-ray-stimulated Compton effect and X-ray–stimulated Breit–Wheeler process. The kinematics of the process is studied in detail: the dependencies of the energy of the scattered electron on its outgoing angle and the energies of the particles of the pair on the outgoing angle of the scattered electron and the opening angle of the pair are obtained. The analysis of the number of different possible particles energies values in the entire range of the angles is also carried out, according to which the energies of the particles of the pair can take up to eight different values at a fixed outgoing angle of the scattered electron and opening angle of the pair. The estimate of the resonant differential probability per unit time of the process, which reaches the maximum value of 24 orders of the value of the non-resonant differential probability per unit time, is obtained. The angular distribution of the differential probability per unit time of the process is analyzed, particularly for the case of high-energy positrons presenting in pulsar radiation.


2019 ◽  
Vol 490 (2) ◽  
pp. 1774-1783 ◽  
Author(s):  
Will Lockhart ◽  
Samuel E Gralla ◽  
Feryal Özel ◽  
Dimitrios Psaltis

ABSTRACT Thermal X-ray emission from rotation-powered pulsars is believed to originate from localized ‘hotspots’ on the stellar surface occurring where large-scale currents from the magnetosphere return to heat the atmosphere. Light-curve modelling has primarily been limited to simple models, such as circular antipodal emitting regions with constant temperature. We calculate more realistic temperature distributions within the polar caps, taking advantage of recent advances in magnetospheric theory, and we consider their effect on the predicted light curves. The emitting regions are non-circular even for a pure dipole magnetic field, and the inclusion of an aligned magnetic quadrupole moment introduces a north–south asymmetry. As the quadrupole moment is increased, one hotspot grows in size before becoming a thin ring surrounding the star. For the pure dipole case, moving to the more realistic model changes the light curves by $5\!-\!10{{\, \rm per\, cent}}$ for millisecond pulsars, helping to quantify the systematic uncertainty present in current dipolar models. Including the quadrupole gives considerable freedom in generating more complex light curves. We explore whether these simple dipole+quadrupole models can account for the qualitative features of the light curve of PSR J0437−4715.


1987 ◽  
Vol 125 ◽  
pp. 207-225
Author(s):  
Jonathan Arons

Some basic concepts of accretion onto the polar caps of magnetized neutron stars are reviewed. Preliminary results of new, multidimensional, time–dependent calculations of polar cap flow are outlined, and are used to suggest the possible observability of fluctuations in the X–ray intensity of accretion powered pulsars on time scales of 10–100 msec. The possible relevance of such fluctuations to Quasi–Periodic oscillations is suggested. Basic concepts of the interaction between a disk and the magnetosphere of a neutron star are also discussed. Some recent work on the disk–magnetosphere interaction is outlined, leading to the suggestion that a neutron star can lose angular momentum by driving some or all of the mass in the disk off as a centrifugally driven wind. The relevance of such mass loss to the orbital evolution of the binary is pointed out.


1981 ◽  
Vol 95 ◽  
pp. 255-261
Author(s):  
V. V. Zheleznyakov

In this report we shall discuss the origin of radiation from the neutron star component of X-ray binary systems whose spectra contain cyclotron lines (Her X-1 and 4U0115+63). A relevant model of the polar region of a neutron star is presented in Figure 1. According to this model the observed X-rays (continuum + cyclotron lines) are generated in the dense plasma atmosphere of a star (in its hot spot heated by accreting matter). The problem of heating the neutron star atmosphere due to accretion has been earlier investigated by Zeldovich and Shakura (1969). Cyclotron lines are formed similarly to the Fraunhofer spectrum of ordinary stars and are absorption lines. For objects such as Her X-1 and 4U0115+63 the cyclotron emission and absorption in the extended accreting column with an inhomogeneous magnetic field should be unessential. Otherwise the accreting column will produce an X-ray continuum devoid of any line type features.


2000 ◽  
Vol 177 ◽  
pp. 473-478
Author(s):  
A. I. Tsygan

AbstractWe study emission of particles and photons from a pulsar polar cap. The Goldreich-Julian model for the regime of free emission of charged particles from the neutron star surface is used. In this case the electric field is generated due to the general relativistic effect of dragging of inertial frames. The spectra and shapes of gamma-ray pulses, the parameters of the electron-positron plasma and the intensity of X-ray emission from hot spots in the polar region of radio pulsars are discussed. The effect of non-dipole magnetic field on X-ray emission of polar caps is considered. It is shown that the increase of magnetic line curvature leads to much smaller temperatures and X-ray luminosities of the polar caps as compared with the purely dipole field.


2015 ◽  
Vol 2 (1) ◽  
pp. 269-272
Author(s):  
P. Zemko ◽  
M. Orio

Four VY Scl-type nova-like systems were observed in X-rays both during the low and the high optical states. They are BZ Cam, MV Lyr, TT Ari, and V794 Aql. Using archival ROSAT, <em>Swift</em> and <em>SUZAKU</em> observations we found that the X-ray flux for BZ Cam is higher during the low state, but there is no supersoft X-ray source (SSS) that would indicate the thermonuclear burning predicted in a previous article. The X-ray flux is lower by a factor 2–10 in the low than the high state in other systems, and does not reflect the drop in <em>˙M</em> inferred from optical and UV data. The best fit model for the X-ray spectra is a collisionally ionized plasma model. The X-ray flux may originate in a shocked wind or in accretion onto polar caps in intermediate polar systems that continues even during the low state.


2021 ◽  
Vol 922 (2) ◽  
pp. 253
Author(s):  
S. Mereghetti ◽  
M. Rigoselli ◽  
R. Taverna ◽  
L. Baldeschi ◽  
S. Crestan ◽  
...  

Abstract Calvera (1RXS J141256.0+792204) is an isolated neutron star detected only through its thermal X-ray emission. Its location at high Galactic latitude (b = +37°) is unusual if Calvera is a relatively young pulsar, as suggested by its spin period (59 ms) and period derivative (3.2 × 10−15 s s−1). Using the Neutron Star Interior Composition Explorer, we obtained a phase-connected timing solution spanning four years, which allowed us to measure the second derivative of the frequency ν ̈ = − 2.5 × 10 − 23 Hz s−2 and to reveal timing noise consistent with that of normal radio pulsars. A magnetized hydrogen atmosphere model, covering the entire star surface, provides a good description of the phase-resolved spectra and energy-dependent pulsed fraction. However, we found that a temperature map more anisotropic than that produced by a dipole field is required, with a hotter zone concentrated toward the poles. By adding two small polar caps, we found that the surface effective temperature and that of the caps are ∼0.1 and ∼0.36 keV, respectively. The inferred distance is ∼3.3 kpc. We confirmed the presence of an absorption line at 0.7 keV associated with the emission from the whole star surface, difficult to interpret as a cyclotron feature and more likely originating from atomic transitions. We searched for pulsed γ-ray emission by folding seven years of Fermi-LAT data using the X-ray ephemeris, but no evidence for pulsations was found. Our results favor the hypothesis that Calvera is a normal rotation-powered pulsar, with the only peculiarity of being born at a large height above the Galactic disk.


1998 ◽  
Vol 31 (5) ◽  
pp. 815-817 ◽  
Author(s):  
M. J. Hardie ◽  
K. Kirschbaum ◽  
A. Martin ◽  
A. A. Pinkerton

An open-flow helium cryostat for single-crystal X-ray diffraction experiments capable of reaching 14 K has been developed using off-the-shelf components. Solid/liquid air build-up is prevented using the transfer-line helium back-flow and a heated nozzle. The system has run for over 30 h with no frost build-up. The effectiveness of the system has been demonstrated using test data for oxalic acid, terbium vanadate and dysprosium vanadate.


1981 ◽  
Vol 95 ◽  
pp. 99-102
Author(s):  
Andrew F. Cheng

Possible observational consequences are outlined for pulsar models with positive ion outflow at the polar caps together with e+-e− pair production discharge there. A characteristic thermal x-ray luminosity is maintained by discharge heating in regions of positive current outflow. A decrease in polar cap thermal x-ray emission may occur during radio nulls. Two mechanisms are identified which can yield temporal modulation of the outflowing ion and e+-e− plasmas, and which may lead to modulation of coherent radio emission on observed microstructure timescales. These are: (1) polar cap temperature oscillations which occur preferentially in pulsars of low surface magnetic field, and (2) the tendency of sparks to migrate toward the convex side of the magnetic field lines.


2017 ◽  
Vol 13 (S337) ◽  
pp. 116-119
Author(s):  
Slavko Bogdanov

AbstractThe Galactic population of rotation-powered (aka radio) millisecond pulsars (MSPs) exhibits diverse X-ray properties. Energetic MSPs show pulsed non-thermal radiation from their magnetospheres. Eclipsing binary MSPs predominantly have X-ray emission from a pulsar wind driven intra-binary shock. Typical radio MSPs emit X-rays from their heated magnetic polar caps. These thermally emitting MSPs offer the opportunity to place interesting constraints on the long sought after dense matter equation of state, making them important targets of investigation of the recently deployed Neutron Star Interior Composition Explorer (NICER) X-ray mission.


Sign in / Sign up

Export Citation Format

Share Document