Expert Opinion and Ground-Water Quality Protection: The Case of Nitrate in Drinking Water

Ground Water ◽  
1989 ◽  
Vol 27 (6) ◽  
pp. 835-847 ◽  
Author(s):  
R. Rajagopal ◽  
Graham Tobin
2017 ◽  
Vol 1 (2) ◽  
pp. 1-11
Author(s):  
Ali Nasser Hilo

The low level of water in rivers in Iraq leads to poor water quality, on that basis; we need to assess Iraq's water resources for uses of irrigation and drinking water. This study present a model accounts for ground water quality by using a water quality index (WQI) for the region defined between the city of Kut and the city of Badra in Wasit province. this study relies on a system of wells set up along the path through the Badra –Kut  and around it  up to 78 wells. The study showed poor quality of ground water in the region of study and it is unsuitability for irrigation and drinking water, as well as provided a solution to the water accumulated in the Shuwayja to reduce the bad effect on groundwater by using a system of branch and collection canals  then pumping at the effluent  of Al  Shuwayja in seasons of rainy season ..Water quality index calculated depend on the basis of various physic-chemical parameters as PH, Ec , TDS, TSS, Nacl , SO4 ,Na , and  Mg. The resultant and analytical are present with use of Arch GIS program – geostastical analysis for the water index and water quality parameters


Author(s):  
P. Prakash ◽  
A. Kumar Das ◽  
C. V. S. Sandilya

The state of Andhra Pradesh, India falls in water stress<sup>4</sup> area. The primary objective of this study is to examine the spatial distribution of different chemical elements with respect to its contamination level. About 70 % of drinking water needs in rural areas and 40 % drinking water needs in urban areas are met from groundwater resources. In the last decades, rapid population growth coupled with agricultural expansion due to subsidized power to agriculture has significantly increased demand on groundwater resources. Combined to this, the effect of Global warming has put stress on ground water which is resulting in declines in water levels and deterioration of ground water quality. This may be evidenced by the fact that the phreatic aquifer which was in use two decades ago, is existing no more now in some of the parts of the study area and the water is being drawn from deeper aquifers beyond phreatic aquifers. The study has been carried out for which one or more elements are contaminated and to study its spatial distribution.


2016 ◽  
Vol 11 (2) ◽  
pp. 329-341
Author(s):  
C. Mukanga ◽  
T. Chitata ◽  
B. T. Mudereri

Ground water quality conformance to the World Health Organisation standards for drinking water was carried out and inferred to the health risks associated with use of such quality of water. Water samples were collected thrice a month, from nine boreholes, over a period of twelve months and analysed for physical, chemical and biological parameters. Chemical parameters were tested using UV-Vis photometry. Physical parameters were measured using HI9829 waterproof portable logging multi-parameter meter and biological parameters were determined using the Minimal Media ONRG-MUG test and the Membrane Filtration Method (MF). Results shows that total hardness and Fe concentration were above limit in 78% and 56% of the sampled boreholes, respectively. pH, EC, Ca, Cl, Fl, Mn, Mg and Turbidity were within the acceptable WHO limits. Of the sampled boreholes, 67% were not conforming to the Escherichia coli loads recommended for drinking water. Parametric correlations showed strong and significant correlations between chlorides and fluorides (r = 0.68; p &lt; 0.05), Nitrates and Sulphates (r = 0.78; p &lt; 0.05). There is need to treat borehole water to eliminate E. coli and reduce nitrates and total hardness. Furthermore, analysis and monitoring systems to determine temporal variability and health risks, respectively, needs to be put in place.


2017 ◽  
Vol 2 (1) ◽  
pp. 38-51
Author(s):  
D. K. Umak ◽  
V. L. Punwatkar ◽  
V. K. Parasher

Barna Watershed is a catchment of Barna River and its tributaries, lies in the Raisen district of Madhya Pradesh. The total area of Barna Watershed is approximately 1129 Sq. Km. The aim of the study was to analyze the observed ground water quality parameters and to create spatial map for drinking water purpose for Barna Watershed. For the above study ground water Samples were collected from the field and some GWQ data were collected from PHED, M.P and National Rural Development Water Programme (IMIS) website under Ministry of Drinking water & Sanitation. The GWQ layers were generated separately for each element for Both Pre-Monsoon and Post-Monsoon Season, from the well point layers with the help of Inverse Distance weighted Method (IDW) interpolation technique using ArcGIS 9.3 software. Each element wise layer has been categorized into three categories (1) potable water in Desirable limits (2) Potable water in permissible limits (3) Non-potable ground water, as per BIS standard 2012. Integrating layers of pre-monsoon; pre-monsoon Ground Water Quality map has been prepared and integrating layers of post-monsoon; post-monsoon Ground Water Quality map has been prepared. Integrating the pre & post monsoon Ground water quality map, final ground water quality class map has been prepared. The Final Ground Water Quality class map has been divided into 9 classes as the standard given by the NRSC, ISRO; Ground Water Quality, manual of RGNDWM-PH IV. The Final Ground Water Quality Class map of Barna Watershed shows, out of 75.04% Non-Potable area73.12% area is Non- Potable due to excess of Iron and out 65.51% Habitations which is falling in Non-Potable class, 56.89% habitation are severely affected by excess of Iron.


Sign in / Sign up

Export Citation Format

Share Document