Detection of Advancing Edge and Length of Precursor Film Ahead of Macroscopic Contact Line of Droplet Spreading on Solid Substrate

2009 ◽  
Vol 1161 (1) ◽  
pp. 292-303 ◽  
Author(s):  
Takumi Konisho ◽  
Ichiro Ueno
Author(s):  
Ichiro Ueno

The author introduces a series of experimental studies on a simple but complex wetting process; a droplet spreads on a solid substrate. The spreading droplet on the solid substrate is accompanied with the movement of a visible boundary line so-called ‘macroscopic contact line.’ Existing studies have indicated there exits a thin liquid film known as ‘precursor film’ ahead the macroscopic contact line of the droplet. The present author’s group has dedicated their special effort to detect the advancing edge of the precursor film by applying a convectional laser interferometry and a high-speed camera, and to evaluate the spreading rate of the precursor film.


Author(s):  
Ichiro Ueno ◽  
Kanji Hirose ◽  
Yusuke Kizaki ◽  
Yoshiaki Kisara ◽  
Yoshizumi Fukuhara

The authors pay their special attention to formation process of wafer-thin liquid film, known as ‘precursor film,’ ahead moving macroscopic contact line of a droplet spreading on a solid substrate. The spreading droplet on the solid substrate is accompanied with the movement of a visible boundary line so-called ‘macroscopic contact line.’ Existing studies have indicated there exits a thin liquid film known as ‘precursor film’ ahead the macroscopic contact line of the droplet. The present author’s group has dedicated their special effort to detect the formation process of the precursor film by applying a convectional laser interferometry and a high-speed camera, and to evaluate the spreading rate of the precursor film. In the present study, existing length of the precursor film at a very early stage of the droplet spreading is evaluated by applying a Brewster-angle microscopy as well as the interferometer. The authors extend their attention to the advancing process of the precursor film on inclined substrate.


2012 ◽  
Vol 134 (5) ◽  
Author(s):  
Ichiro Ueno ◽  
Kanji Hirose ◽  
Yusuke Kizaki ◽  
Yoshiaki Kisara ◽  
Yoshizumi Fukuhara

The authors pay their special attention to formation process of wafer-thin liquid film, known as “precursor film,” ahead moving macroscopic contact line of a droplet spreading on a solid substrate. The spreading droplet on the solid substrate is accompanied with the movement of a visible boundary line so-called “macroscopic contact line.” Existing studies have indicated there exits a thin liquid film known as precursor film ahead the macroscopic contact line of the droplet. The present author’s group has dedicated their special effort to detect the formation process of the precursor film by applying a convectional laser interferometry and a high-speed camera, and to evaluate the spreading rate of the precursor film. In the present study, existing length of the precursor film at a very early stage of the droplet spreading is evaluated by applying a Brewster-angle microscopy as well as the interferometer. The authors extend their attention to the advancing process of the precursor film on inclined substrate.


2015 ◽  
Vol 784 ◽  
pp. 465-486 ◽  
Author(s):  
Leonardo Espín ◽  
Satish Kumar

Wetting of permeable substrates by liquids is an important phenomenon in many natural and industrial processes. Substrate heterogeneities may significantly alter liquid spreading and interface shapes, which in turn may alter liquid imbibition. A new lubrication-theory-based model for droplet spreading on permeable substrates that incorporates surface roughness is developed in this work. The substrate is assumed to be saturated with liquid, and the contact-line region is described by including a precursor film and disjoining pressure. A novel boundary condition for liquid imbibition is applied that eliminates the need for a droplet-thickness-dependent substrate permeability that has been employed in previous models. A nonlinear evolution equation describing droplet height as a function of time and the radial coordinate is derived and then numerically solved to characterize the influence of substrate permeability and roughness on axisymmetric droplet spreading. Because it incorporates surface roughness, the new model is able to describe the contact-line pinning that has been observed in experiments but not captured by previous models.


Author(s):  
Shaofan Li ◽  
Houfu Fan

In this paper, a multiscale moving contact line (MMCL) theory is presented and employed to simulate liquid droplet spreading and capillary motion. The proposed MMCL theory combines a coarse-grained adhesive contact model with a fluid interface membrane theory, so that it can couple molecular scale adhesive interaction and surface tension with hydrodynamics of microscale flow. By doing so, the intermolecular force, the van der Waals or double layer force, separates and levitates the liquid droplet from the supporting solid substrate, which avoids the shear stress singularity caused by the no-slip condition in conventional hydrodynamics theory of moving contact line. Thus, the MMCL allows the difference of the surface energies and surface stresses to drive droplet spreading naturally. To validate the proposed MMCL theory, we have employed it to simulate droplet spreading over various elastic substrates. The numerical simulation results obtained by using MMCL are in good agreement with the molecular dynamics results reported in the literature.


Author(s):  
Ichiro Ueno ◽  
Kanji Hirose ◽  
Yusuke Kizaki

We focus on a formation process of a quite thin liquid film, known as ‘precursor film,’ ahead a droplet spreading on a smooth solid substrate. The spreading droplet on the solid substrate is accompanied with a movement of a visible boundary line so-called ‘macroscopic contact line.’ Existing studies have indicated there exist two major regions of the precursor film, that is, a region dominated by the fluid dynamics, and a region dominated by the molecular diffusion. Our group has dedicated our special effort to detect the formation process of the precursor film by applying a convectional laser interferometry and a high-speed camera, and to evaluate the spreading rate of the precursor film. In the present study, the existing length of the precursor film at a very early stage of the droplet spreading is evaluated by applying a Brewster-angle microscopy as well as the interferometer. We extend our attention to the advancing process of the precursor film on inclined substrate.


2013 ◽  
Vol 715 ◽  
pp. 283-313 ◽  
Author(s):  
Yi Sui ◽  
Peter D. M. Spelt

AbstractUsing a slip-length-based level-set approach with adaptive mesh refinement, we have simulated axisymmetric droplet spreading for a dimensionless slip length down to $O(1{0}^{\ensuremath{-} 4} )$. The main purpose is to validate, and where necessary improve, the asymptotic analysis of Cox (J. Fluid Mech., vol. 357, 1998, pp. 249–278) for rapid droplet spreading/dewetting, in terms of the detailed interface shape in various regions close to the moving contact line and the relation between the apparent angle and the capillary number based on the instantaneous contact-line speed, $\mathit{Ca}$. Before presenting results for inertial spreading, simulation results are compared in detail with the theory of Hocking & Rivers (J. Fluid Mech., vol. 121, 1982, pp. 425–442) for slow spreading, showing that these agree very well (and in detail) for such small slip-length values, although limitations in the theoretically predicted interface shape are identified; a simple extension of the theory to viscous exterior fluids is also proposed and shown to yield similar excellent agreement. For rapid droplet spreading, it is found that, in principle, the theory of Cox can predict accurately the interface shapes in the intermediate viscous sublayer, although the inviscid sublayer can only be well presented when capillary-type waves are outside the contact-line region. However, $O(1)$ parameters taken to be unity by Cox must be specified and terms be corrected to ${\mathit{Ca}}^{+ 1} $ in order to achieve good agreement between the theory and the simulation, both of which are undertaken here. We also find that the apparent angle from numerical simulation, obtained by extrapolating the interface shape from the macro region to the contact line, agrees reasonably well with the modified theory of Cox. A simplified version of the inertial theory is proposed in the limit of negligible viscosity of the external fluid. Building on these results, weinvestigate the flow structure near the contact line, the shear stress and pressure along the wall, and the use of the analysis for droplet impact and rapid dewetting. Finally, we compare the modified theory of Cox with a recent experiment for rapid droplet spreading, the results of which suggest a spreading-velocity-dependent dynamic contact angle in the experiments. The paper is closed with a discussion of the outlook regarding the potential of using the present results in large-scale simulations wherein the contact-line region is not resolved down to the slip length, especially for inertial spreading.


2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Hyun Jun Jeong ◽  
Wook Ryol Hwang ◽  
Chongyoup Kim

We present two-dimensional numerical simulations of the impact and spreading of a droplet containing a number of small particles on a flat solid surface, just after hitting the solid surface, to understand particle effects on spreading dynamics of a particle-laden droplet for the application to the industrial inkjet printing process. The Navier-Stokes equation is solved by a finite-element-based computational scheme that employs the level-set method for the accurate interface description between the drop fluid and air and a fictitious domain method for suspended particles to account for full hydrodynamic interaction. Focusing on the particle effect on droplet spreading and recoil behaviors, we report that suspended particles suppress the droplet oscillation and deformation, by investigating the drop deformations for various Reynolds numbers. This suppressed oscillatory behavior of the particulate droplet has been interpreted with the enhanced energy dissipation due to the presence of particles.


Author(s):  
Darryl D. Holm ◽  
Lennon Ó Náraigh ◽  
Cesare Tronci

This paper exploits the theory of geometric gradient flows to introduce an alternative regularization of the thin-film equation valid in the case of large-scale droplet spreading—the geometric diffuse-interface method. The method possesses some advantages when compared with the existing models of droplet spreading, namely the slip model, the precursor-film method and the diffuse-interface model. These advantages are discussed and a case is made for using the geometric diffuse-interface method for the purpose of numerical simulations. The mathematical solutions of the geometric diffuse interface method are explored via such numerical simulations for the simple and well-studied case of large-scale droplet spreading for a perfectly wetting fluid—we demonstrate that the new method reproduces Tanner’s Law of droplet spreading via a simple and robust computational method, at a low computational cost. We discuss potential avenues for extending the method beyond the simple case of perfectly wetting fluids.


Sign in / Sign up

Export Citation Format

Share Document