Power-law Distribution of Normal Fault Displacement and Length and Estimation of Extensional Strain due to Normal Faults: A Case Study of the Sierra de San Miguelito, Mexico

2005 ◽  
Vol 79 (1) ◽  
pp. 36-42 ◽  
Author(s):  
XU Shunshan ◽  
A. F. NIETO-SAMANIEGO ◽  
S. A. ALANIZ-ÁLVAREZ
Geophysics ◽  
2007 ◽  
Vol 72 (3) ◽  
pp. B59-B68 ◽  
Author(s):  
Valeria C. Barbosa ◽  
Paulo T. Menezes ◽  
João B. Silva

We demonstrate the potential of gravity data to detect and to locate in-depth subtle normal faults in the basement relief of a sedimentary basin. This demonstration is accomplished by inverting the gravity data with the constraint that the estimated basement relief presents local abrupt faults and is smooth elsewhere. We inverted the gravity data from the onshore Almada Basin in northeastern Brazil, and we mapped several normal faults whose locations and plane geometries were already known from seismic imaging. The inversion method delineated well both the discontinuities with small or large slips and a sequence of step faults. Using synthetic data, we performed a systematic search of normal fault slips versus fault displacement depths to map the fault-detectable region in this space. This mapping helps to assess the ability of gravity inversion to detect normal faults. Mapping shows that normal faults with small [Formula: see text], medium (about [Formula: see text]), and large (about [Formula: see text]) vertical slips can be detected if the maximum midpoint depths of the fault planes are smaller than 1.8, 3.8, and [Formula: see text], respectively.


Geology ◽  
2005 ◽  
Vol 33 (8) ◽  
pp. 645-648 ◽  
Author(s):  
Deirdre Commins ◽  
Sanjeev Gupta ◽  
Joseph Cartwright

Abstract We use the deformation of streams by the growth of active normal faults within the Canyonlands graben of southeastern Utah to constrain the displacement evolution of a fault array during segment interaction and linkage. Coupling fault displacement data with geomorphic analysis of present-day streams and paleostreams permits sequential reconstruction of a three-segment fault array from initial component segments to its final displacement geometry. Our results show that although segment interaction causes enhanced displacement addition at overlap zones, postlinkage displacement accumulation is significant and permits array equilibration to a displacement-length ratio characteristic of a single fault. Evidence of stream disequilibrium indicates that this postlinkage displacement addition was rapid compared to that during the fault interaction phase.


2021 ◽  
Vol 61 (2) ◽  
pp. 632
Author(s):  
Monica Jimenez ◽  
Simon P. Holford ◽  
Rosalind C. King ◽  
Mark A. Bunch

Kinematics of gravity-driven normal faults exerts a critical control on petroleum systems in deltaic settings but to date has not been extensively examined. The Ceduna Sub-basin (CSB) is a passive margin basin containing the White Pointer (Albian-Cenomanian) and Hammerhead (Campanian-Maastrichtian) delta systems that detach on shale layers of Albian-Cenomanian and Turonian-Coniacian ages, respectively. Here we present evidence for spatially variable fault growth styles based on interpretation of the Ceduna 3D seismic survey and fault kinematic analyses using displacement–distance, displacement–depth and expansion index methods. We identified faults that continuously grew either between the Cenomanian–Santonian or Santonian and the Maastrichtian located throughout the study area and faults that exhibit growth between the Cenomanian–Maastrichtian that are geographically separated into three areas according to their evolution histories: (i) Northern CSB faults exhibit constant growth between the Cenomanian and Maastrichtian. (ii) Central CSB faults show two dip-linkage intervals between (a) Cenomanian and Coniacian–Late Santonian, (b) Coniacian–Late Santonian and Late Santonian–Maastrichtian segments, respectively. (iii) Central and southern CSB faults exhibit dip-linkage intervals between Cenomanian–early Santonian and Late Santonian–Maastrichtian segments. Our study demonstrates a relationship between the location of the Cenomanian–Maastrichtian faults and their evolution history suggesting constant growth evolution at north and dip linkage at the central and south areas.


2021 ◽  
Author(s):  
Ahmed Alghuraybi ◽  
Rebecca Bell ◽  
Chris Jackson

Extensional growth folds form ahead of the tips of propagating normal faults. These folds can accommodate a considerable amount of extensional strain and they may control rift geometry. Fold-related surface deformation may also control the sedimentary evolution of syn-rift depositional systems; thus, the stratigraphic record can constrain the four-dimensional evolution of extensional growth folds, which in term provides a record of fault growth and broader rift history. Here we use high-quality 3D seismic reflection and borehole data from the SW Barents Sea, offshore northern Norway to determine the geometric and temporal evolution of extensional growth folds associated with a large, long-lived, basement-involved fault. We show that the fault grew via linkage of four segments, and that fault growth was associated with the formation of fault-parallel and fault-perpendicular folds that accommodated a substantial portion (10 – 40%) of the total extensional strain. Fault-propagation folds formed at multiple times in response to periodic burial of the causal fault, with individual folding events (c. 25 Myr and 32 Myr) lasting a considered part of the total, c. 130 Myr rift period. Our study supports previous suggestions that continuous (i.e., folding) as well as discontinuous (i.e., faulting) deformation must be explicitly considered when assessing total strain in extensional setting. We also show changes in the architecture of growth strata record alternating periods of how folding and faulting, showing how rift margins may be characterised by basinward-dipping monoclines as opposed to fault-bound scarps. Our findings have broader implications for our understanding of the structural, physiographic, and tectonostratigraphic evolution of rift basins.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ghislain Romaric Meleu ◽  
Paulin Yonta Melatagia

AbstractUsing the headers of scientific papers, we have built multilayer networks of entities involved in research namely: authors, laboratories, and institutions. We have analyzed some properties of such networks built from data extracted from the HAL archives and found that the network at each layer is a small-world network with power law distribution. In order to simulate such co-publication network, we propose a multilayer network generation model based on the formation of cliques at each layer and the affiliation of each new node to the higher layers. The clique is built from new and existing nodes selected using preferential attachment. We also show that, the degree distribution of generated layers follows a power law. From the simulations of our model, we show that the generated multilayer networks reproduce the studied properties of co-publication networks.


2021 ◽  
Author(s):  
David A Garcia ◽  
Gregory Fettweis ◽  
Diego M Presman ◽  
Ville Paakinaho ◽  
Christopher Jarzynski ◽  
...  

Abstract Single-molecule tracking (SMT) allows the study of transcription factor (TF) dynamics in the nucleus, giving important information regarding the diffusion and binding behavior of these proteins in the nuclear environment. Dwell time distributions obtained by SMT for most TFs appear to follow bi-exponential behavior. This has been ascribed to two discrete populations of TFs—one non-specifically bound to chromatin and another specifically bound to target sites, as implied by decades of biochemical studies. However, emerging studies suggest alternate models for dwell-time distributions, indicating the existence of more than two populations of TFs (multi-exponential distribution), or even the absence of discrete states altogether (power-law distribution). Here, we present an analytical pipeline to evaluate which model best explains SMT data. We find that a broad spectrum of TFs (including glucocorticoid receptor, oestrogen receptor, FOXA1, CTCF) follow a power-law distribution of dwell-times, blurring the temporal line between non-specific and specific binding, suggesting that productive binding may involve longer binding events than previously believed. From these observations, we propose a continuum of affinities model to explain TF dynamics, that is consistent with complex interactions of TFs with multiple nuclear domains as well as binding and searching on the chromatin template.


2020 ◽  
Vol 110 (3) ◽  
pp. 1090-1100
Author(s):  
Ronia Andrews ◽  
Kusala Rajendran ◽  
N. Purnachandra Rao

ABSTRACT Oceanic plate seismicity is generally dominated by normal and strike-slip faulting associated with active spreading ridges and transform faults. Fossil structural fabrics inherited from spreading ridges also host earthquakes. The Indian Oceanic plate, considered quite active seismically, has hosted earthquakes both on its active and fossil fault systems. The 4 December 2015 Mw 7.1 normal-faulting earthquake, located ∼700  km south of the southeast Indian ridge in the southern Indian Ocean, is a rarity due to its location away from the ridge, lack of association with any mapped faults and its focal depth close to the 800°C isotherm. We present results of teleseismic body-wave inversion that suggest that the earthquake occurred on a north-northwest–south-southeast-striking normal fault at a depth of 34 km. The rupture propagated at 2.7  km/s with compact slip over an area of 48×48  km2 around the hypocenter. Our analysis of the background tectonics suggests that our chosen fault plane is in the same direction as the mapped normal faults on the eastern flanks of the Kerguelen plateau. We propose that these buried normal faults, possibly the relics of the ancient rifting might have been reactivated, leading to the 2015 midplate earthquake.


Sign in / Sign up

Export Citation Format

Share Document