Effect of Si3 N4 Addition on Compressive Creep Behavior of Hot-Pressed ZrB2 -SiC Composites

2014 ◽  
Vol 97 (9) ◽  
pp. 2957-2964 ◽  
Author(s):  
Manab Mallik ◽  
Kalyan Kumar Ray ◽  
Rahul Mitra
1996 ◽  
Vol 11 (6) ◽  
pp. 1528-1536 ◽  
Author(s):  
Darryl P. Butt ◽  
David A. Korzekwa ◽  
Stuart A. Maloy ◽  
H. Kung ◽  
John J. Petrovic

Using a cylindrical indenter (or punch), the impression creep behavior of MoSi2-SiC composites containing 0–40% SiC by volume, was characterized at 1000–1200 °C, 258–362 MPa punch pressure. Through finite element modeling, an equation that depends on the material stress exponent was derived that converts the stress distribution beneath the punch to an effective compressive stress. Using this relationship, direct comparisons were made between impression and compressive creep studies. Under certain conditions, compressive creep and impression creep measurements yield comparable results after correcting for effective stresses and strain rates beneath the punch. However, rate-controlling mechanisms may be quite different under the two stressing conditions, in which case impression creep data should not be used to predict compressive creep behavior. The addition of SiC affects the impression creep behavior of MoSi2 in a complex manner by pinning grain boundaries during pressing, thus leading to smaller MoSi2 grains and by obstructing or altering both dislocation motion and grain boundary sliding.


1993 ◽  
Vol 322 ◽  
Author(s):  
Darryl P. Butt ◽  
Stuart A. Maloy ◽  
H. Kung ◽  
David A. Korzekwa ◽  
John J. Petrovic

AbstractUsing a cylindrical indenter, the indentation creep behavior of hot pressed and HIPed MoSi2-SiC composites containing 0-40% SiC by volume, was characterized at 1000-1200°C, 258-362 MPa. The addition of SiC affects the creep behavior of MoSi2 in a complex manner by pinning grain boundaries during pressing, thus leading to smaller MoSi2 grains; by obstructing or altering both dislocation motion and grain boundary sliding; and by increasing the overall yield stress of the material. Comparisons are made between indentation and compressive creep studies. It is shown that under certain conditions, compressive creep and indentation creep measurements yield comparable results after correcting for effective stresses and strain rates beneath the indenter.


2013 ◽  
Vol 49 (8) ◽  
pp. 1012 ◽  
Author(s):  
Hongxing XIAO ◽  
Chongsheng LONG ◽  
Le CHEN ◽  
Bo LIANG

2008 ◽  
Vol 485 (1-2) ◽  
pp. 422-427
Author(s):  
Cosme Roberto Moreira da Silva ◽  
Flaminio Levy Neto ◽  
José Alexander Araújo ◽  
Claudinei dos Santos

2009 ◽  
Vol 106 (8) ◽  
pp. 086105 ◽  
Author(s):  
Guoyong Wang ◽  
Jianshe Lian ◽  
Zhonghao Jiang ◽  
Liyuan Qin ◽  
Qing Jiang

2020 ◽  
Vol 986 ◽  
pp. 102-108 ◽  
Author(s):  
Zhen Xu ◽  
Chuan Guo ◽  
Zhen Rong Yu ◽  
Xin Li ◽  
Xiao Gang Hu ◽  
...  

Tensile and compressive creep behavior of SLMed IN718 alloy under 973K (700°C) were investigated. Crept samples were analyzed by SEM and TEM to expose evolution of microstructure, precipitates and dislocation structure during the creep process. Results show that initial creep rate under compression is higher than under tension for the same creep conditions. Minimum creep rates are approximately the same both in tensile and compressive creep tests. The different creep behaviors may be related to the fact that tension stress promotes precipitations of fine needle-like γ′′ phases, while compression stress promotes precipitations of large size δ phases. The tension-compression asymmetry owns to the increment of chemical potential varying with the stress orientation.


Ceramics ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 210-222 ◽  
Author(s):  
Guenter Unterreiter ◽  
Daniel R. Kreuzer ◽  
Bernd Lorenzoni ◽  
Hans U. Marschall ◽  
Christoph Wagner ◽  
...  

Creep behavior is very important for the selection of refractory materials. This paper presents a methodology to measure the compressive creep behavior of fired magnesia materials at elevated temperatures. The measurements were carried out at 1150–1500 °C and under compression loads from 1–8 MPa. Creep strain was calculated from the measured total strain data. The obtained creep deformations of the experimental investigations were subjected to detailed analysis to identify the Norton-Bailey creep law parameters. The modulus of elasticity was determined in advance to simplify the inverse estimation process for finding the Norton-Bailey creep parameters. In the next step; an extended material model including creep was used in a finite element analysis (FEA) and the creep testing procedure was reproduced numerically. Within the investigated temperature and load range; the creep deformations calculated by FEA demonstrated a good agreement with the results of the experimental investigations. Finally; a finite element unit cell model of a quarter brick representing a section of the lining of a ferrochrome (FeCr) electric arc furnace (direct current) was used to assess the thermo-mechanical stresses and strains including creep during a heat-up procedure. The implementation of the creep behavior into the design process led to an improved prediction of strains and stresses.


Author(s):  
C. Santos ◽  
K. Strecker ◽  
M.J.R. Barboza ◽  
F. Piorino Neto ◽  
O.M.M. Silva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document