Tensile and Compressive Creep Behavior of IN718 Alloy Manufactured by Selective Laser Melting

2020 ◽  
Vol 986 ◽  
pp. 102-108 ◽  
Author(s):  
Zhen Xu ◽  
Chuan Guo ◽  
Zhen Rong Yu ◽  
Xin Li ◽  
Xiao Gang Hu ◽  
...  

Tensile and compressive creep behavior of SLMed IN718 alloy under 973K (700°C) were investigated. Crept samples were analyzed by SEM and TEM to expose evolution of microstructure, precipitates and dislocation structure during the creep process. Results show that initial creep rate under compression is higher than under tension for the same creep conditions. Minimum creep rates are approximately the same both in tensile and compressive creep tests. The different creep behaviors may be related to the fact that tension stress promotes precipitations of fine needle-like γ′′ phases, while compression stress promotes precipitations of large size δ phases. The tension-compression asymmetry owns to the increment of chemical potential varying with the stress orientation.

Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3468 ◽  
Author(s):  
Junxiang Zhang ◽  
Bo Li ◽  
Conghui Zhang ◽  
Peng Li

The development of fractures, which determine the complexity of coal creep characteristics, is the main physical property of coal relative to other rocks. This study conducted a series of multistage creep tests to investigate the creep behavior of coal under different stress levels. A negative elastic modulus and a non-Newtonian component were introduced into the classical Nishihara model based on the theoretical analysis of the experimental results to propose a nonlinear viscoelastic–plastic creep model for describing the non-decay creep behavior of coal. The validity of the model was verified by experimental data. The results show that this improved model can preferably exhibit decelerating, steady state, and accelerating creep behavior during the non-decay creep process. The fitting accuracy of the improved model was significantly higher than that of the classical Nishihara model. Given that acceleration creep is a critical stage in predicting the instability and failure of coal, its successful description using this improved model is crucial for the prevention and control of coal dynamic disasters.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xin Li ◽  
Enlong Liu ◽  
Bingtang Song ◽  
Xingyan Liu

A series of triaxial creep tests under the constant confining pressure are performed on frozen loess specimens, and the creep behavior of the frozen loess with respect to variations in both temperature and deviator stress is examined. Experimental results illustrate that the frozen loess specimens present the attenuation creep at the lower deviatoric stress, whereas the nonattenuation creep under the higher deviatoric stress level, and with a drop in the temperature, the deviator stress value which the exhibition of nonattenuation creep needs will increase under the constant confining pressure condition. According to the microscopic analysis on deformation characteristics in the creep process of frozen soil, both temperature and external stress will cause the hardening and weakening effects, affecting the creep properties of frozen loess. By introducing the hardening variable and damage variable to consider the hardening and weakening effects of the frozen loess, an improved Nishihara model is proposed. The correlations between model parameters and the temperature as well as deviator stress are determined. The comparisons between model predictions and experimental results show that the improved creep constitutive model proposed here can not only describe the whole creep process well, but also reveal the influences of the temperature and deviator stress on the creep behavior of frozen loess, which demonstrate its accuracy and usefulness.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 918
Author(s):  
Bettina Camin ◽  
Maximilian Gille

Lightweight constructions and materials offer the opportunity to reduce CO2 emissions in the transport sector. As components in vehicles are often exposed to higher temperatures above 40% of the melting temperature, there is a risk of creep. The creep behavior usually is investigated based on standard procedures. However, lightweight constructions frequently have dimensions not adequately represented by standardized specimen geometries. Therefore, comparative creep experiments on non-standardized miniature and standardized specimens are performed. Due to a modified test procedure specified by a miniature creep device, only the very first primary creep stage shows a minor influence, but subsequently, no effect on the creep process is detected. The creep behavior of hot extruded and heat treated ME21 magnesium alloy is investigated. It is observed that the creep parameters determined by the miniature and standard creep tests are different. As the deviations are systematic, qualitatively, evidence of the creep behavior is achieved. The creep parameters obtained, and particularly the creep strain and the strain rate, show a higher creep resistance of the miniature specimen. An initial higher number of twinned grains and possible multiaxiality in the gauge volume of the miniature specimen can be responsible.


2004 ◽  
Vol 842 ◽  
Author(s):  
Tohru Takahashi ◽  
Yuki Sakaino ◽  
Shunzi Song

ABSTRACTCompressive creep behavior has been investigated on coarse grained Ti3Al alloys with aluminum contents ranging from 15mol%Al to 42mol%Al, in order to obtain basic information concerning the chemical composition effect on creep of Ti3Al. Pure aluminum and titanium of 99.99% purity were arc-melted into small ingots weighing about 10grams under an argon atmosphere. The resulting microstructures after the hot deformation and vacuum annealing contained equiaxed grains whose average diameter ranged from 125 to 192 micrometers except alloys containing 40 and 42 mol% aluminum.Compressive creep tests were performed in vacuum on parallelepiped specimens with dimensions of 2mm×2mm×3mm. The applied compressive stress was 159MPa, and the test temperature was around 1200K.A very small primary transient and the minimum creep rate region followed by a gradual creep acceleration were observed in the materials containing aluminum up to 25mol%. In contrast to this, the materials containing more aluminum than 25mol% showed greater primary transient where creep deceleration continued up to about 0.1 true strain. Dual phase materials containing the γ phase showed small primary transient probably due to the constraint from the γ phase.


2017 ◽  
Vol 54 (7) ◽  
pp. 907-914 ◽  
Author(s):  
Guofang Xu ◽  
Chong Peng ◽  
Wei Wu ◽  
Jilin Qi

A combined constitutive model is developed for the creep behavior of frozen soil in an unconfined condition. The model is obtained by coupling two stress- and time-dependent models, which are responsible for the primary and tertiary creep stages. The model parameters are dependent on temperature and can be readily determined from the strain rate–time curves at two creep stresses. The model performance is demonstrated by simulating the complete strain–time and strain rate–time curves (including primary, secondary, and tertiary stages) of frozen sand and frozen clay in uniaxial creep tests under different creep stresses. Moreover, two equations are obtained from the combined model. One shows a good capability in describing the relationship between creep strength and the time to creep failure. The other makes an excellent prediction of the steady flow rate in a typical creep process. Both equations can reflect the effects of stress and temperature on the creep behavior of frozen soil.


2013 ◽  
Vol 49 (8) ◽  
pp. 1012 ◽  
Author(s):  
Hongxing XIAO ◽  
Chongsheng LONG ◽  
Le CHEN ◽  
Bo LIANG

Author(s):  
Francisco Maciel Monticeli ◽  
Ana Karoline dos Reis ◽  
Roberta Motta Neves ◽  
Luis Felipe de Paula Santos ◽  
Edson Cocchieri Botelho ◽  
...  

The thermoplastic and thermoset laminates reinforced with different fibers generate variations in the laminated composite mechanical behavior. This work aims to analyze thermoplastic and thermoset composites creep behavior with a reduced number of experiments, applying curve-fitting analytical models (Weibull and Findley) and statistical approach (ANOVA, F-test, and SRM) in order to describe creep behavior. Creep tests were carried out using a design of experiments to define parameter levels, aiming to reduce the number of the experiments, keeping reliability relevance. The temperature shows a stronger influence of creep deformation compared with the use of distinct materials. Thermoplastic matrices seem to be more sensitive to deformation, decreasing the reinforcement contribution. On the other hand, the creep resistance of the thermoset matrix conducts a significant contribution of strain behavior for the reinforcement used. The Findley model showed a temperature-dependent response. While, the Weibull-based model exhibits temperature and material-dependence, ensuring a greater sensitivity range of the parameters applied, an essential factor for a more realistic method description.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2353
Author(s):  
Xiaochang Duan ◽  
Hongwei Yuan ◽  
Wei Tang ◽  
Jingjing He ◽  
Xuefei Guan

This study develops a unified phenomenological creep model for polymer-bonded composite materials, allowing for predicting the creep behavior in the three creep stages, namely the primary, the secondary, and the tertiary stages under sustained compressive stresses. Creep testing is performed using material specimens under several conditions with a temperature range of 20 °C–50 °C and a compressive stress range of 15 MPa–25 MPa. The testing data reveal that the strain rate–time response exhibits the transient, steady, and unstable stages under each of the testing conditions. A rational function-based creep rate equation is proposed to describe the full creep behavior under each of the testing conditions. By further correlating the resulting model parameters with temperature and stress and developing a Larson–Miller parameter-based rupture time prediction model, a unified phenomenological model is established. An independent validation dataset and third-party testing data are used to verify the effectiveness and accuracy of the proposed model. The performance of the proposed model is compared with that of an existing reference model. The verification and comparison results show that the model can describe all the three stages of the creep process, and the proposed model outperforms the reference model by yielding 28.5% smaller root mean squared errors on average.


1993 ◽  
Vol 115 (2) ◽  
pp. 200-203 ◽  
Author(s):  
Z. Xia ◽  
F. Ellyin

Constant strain-rate plastic straining followed by creep tests were conducted to investigate the effect of prior plastic straining on the subsequent creep behavior of 304 stainless steel at room temperature. The effects of plastic strain and plastic strain-rate were delineated by a specially designed test procedure, and it is found that both factors have a strong influence on the subsequent creep deformation. A creep model combining the two factors is then developed. The predictions of the model are in good agreement with the test results.


2008 ◽  
Vol 485 (1-2) ◽  
pp. 422-427
Author(s):  
Cosme Roberto Moreira da Silva ◽  
Flaminio Levy Neto ◽  
José Alexander Araújo ◽  
Claudinei dos Santos

Sign in / Sign up

Export Citation Format

Share Document