Antibacterial action of lactoferricin B like peptide against Escherichia coli : reactive oxygen species‐induced apoptosis‐like death

2020 ◽  
Vol 129 (2) ◽  
pp. 287-295 ◽  
Author(s):  
B. Lee ◽  
J.S. Hwang ◽  
D.G. Lee
2006 ◽  
Vol 50 (3) ◽  
pp. 949-954 ◽  
Author(s):  
M. Goswami ◽  
S. H. Mangoli ◽  
N. Jawali

ABSTRACT Ciprofloxacin is an important and commonly used member of the fluoroquinolone group of antibiotics. Ciprofloxacin inhibits DNA topoisomerase II and DNA topoisomerase IV activities, eventually leading to bacterial cell death. In addition, an increase of reactive oxygen species in the bacterial cells in response to ciprofloxacin has been shown. We investigated the role of reactive oxygen species in the antibacterial action of ciprofloxacin by studying the effects of different antioxidant compounds on ciprofloxacin susceptibility of Escherichia coli. Among the antioxidants checked, glutathione and ascorbic acid provided substantial protection against ciprofloxacin. The involvement of superoxide anion (O2 −) and hydrogen peroxide (H2O2) in the antibacterial action of ciprofloxacin was analyzed using superoxide dismutase, catalase, and alkyl hydroperoxide reductase knockout strains of E. coli. The effects of multicopy sod genes on ciprofloxacin susceptibility of E. coli were also analyzed. On the basis of our results, we conclude that O2 − and H2O2 may be involved in antibacterial action of ciprofloxacin. Our findings that glutathione gave protection against other fluoroquinolones and not against nonfluoroquinolone antibiotics imply that reactive oxygen species may have a similar role in the antibacterial action of all these fluoroquinolones and that glutathione-mediated protection is not a general phenomenon but specific to fluoroquinolones. These observations are of significance, as fluoroquinolones are important antibiotics with immense therapeutic value, and the effectiveness of treatment by these drugs may be affected by dietary intake and cellular levels of these antioxidants.


2007 ◽  
Vol 51 (3) ◽  
pp. 1119-1122 ◽  
Author(s):  
Manish Goswami ◽  
Suhas H. Mangoli ◽  
Narendra Jawali

ABSTRACT We examined the effects of antioxidants and the role of reactive oxygen species (ROS) on the antibacterial action of aminoglycosides in Escherichia coli. We concluded that reduced streptomycin sensitivity in the presence of glutathione and ascorbic acid is not due to the antioxidant-mediated scavenging of ROS.


Author(s):  
Anahita Rezaeiroshan ◽  
Majid Saeedi ◽  
Katayoun Morteza-Semnani ◽  
Jafar Akbari ◽  
Akbar Hedayatizadeh-Omran ◽  
...  

Abstract Purposes Reactive oxygen species production is harmful to human’s health. The presence of antioxidants in the body may help to diminish reactive oxygen species. Trans-ferulic acid is a good antioxidant, but its low water solubility excludes its utilization. The study aims to explore whether a vesicular drug delivery could be a way to overcome the poor absorption of trans-ferulic acid hence improving its antimicrobial efficiency and antioxidant effect. Methods Niosomal vesicles containing the drug were prepared by film hydration method. The obtained vesicles were investigated in terms of morphology, size, entrapment efficiency, release behavior, cellular cytotoxicity, antioxidant, cellular protection study, and antimicrobial evaluations. Results The optimized niosomal formulation had a particle size of 158.7 nm and entrapment efficiency of 21.64%. The results showed that the optimized formulation containing 25 μM of trans-ferulic acid could enhance the viability of human foreskin fibroblast HFF cell line against reactive oxygen species production. The minimum effective dose of the plain drug and the niosomal formulation against Staphylococcus aurous (ATCC 29213) was 750 µg/mL and 375 µg/mL, respectively, and for Escherichia coli (ATCC 25922), it was 750 µg/mL and 187/5 µg/mL, respectively. The formulation could also improve the minimum bactericidal concentration of the drug in Staphylococcus aurous, Escherichia coli, and Acinobacter baumannii (ATCC 19606). Conclusion These results revealed an improvement in both antibacterial and antioxidant effects of the drug in the niosomal formulation.


2001 ◽  
Vol 280 (1) ◽  
pp. L10-L17 ◽  
Author(s):  
Han-Ming Shen ◽  
Zhuo Zhang ◽  
Qi-Feng Zhang ◽  
Choon-Nam Ong

Alveolar macrophages (AMs) are the principal target cells of silica and occupy a key position in the pathogenesis of silica-related diseases. Silica has been found to induce apoptosis in AMs, whereas its underlying mechanisms involving the initiation and execution of apoptosis are largely unknown. The main objective of the present study was to examine the form of cell death caused by silica and the mechanisms involved. Silica-induced apoptosis in AMs was evaluated by terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling assay and cell cycle/DNA content analysis. The elevated level of reactive oxygen species (ROS), caspase-9 and caspase-3 activation, and poly(ADP-ribose) polymerase (PARP) cleavage in silica-treated AMs were also determined. The results showed that there was a temporal pattern of apoptotic events in silica-treated AMs, starting with ROS formation and followed by caspase-9 and caspase-3 activation, PARP cleavage, and DNA fragmentation. Silica-induced apoptosis was significantly attenuated by a caspase-3 inhibitor, N-acetyl-Asp-Glu-Val-Asp aldehyde, and ebselen, a potent antioxidant. These findings suggest that apoptosis is an important form of cell death caused by silica exposure in which the elevated ROS level that results from silica exposure may act as an initiator, leading to caspase activation and PARP cleavage to execute the apoptotic process.


Sign in / Sign up

Export Citation Format

Share Document