scholarly journals Systematic analysis on multiple Gene Expression Omnibus data sets reveals fierce immune response in hepatitis B virus‐related acute liver failure

2020 ◽  
Vol 24 (17) ◽  
pp. 9798-9809
Author(s):  
Huadi Chen ◽  
Wenting Zhao ◽  
Yixi Zhang ◽  
Yiwen Guo ◽  
Weixin Luo ◽  
...  
2015 ◽  
Vol 90 (1) ◽  
pp. 486-496 ◽  
Author(s):  
Xiuji Cui ◽  
Daniel N. Clark ◽  
Kuancheng Liu ◽  
Xiao-Dong Xu ◽  
Ju-Tao Guo ◽  
...  

ABSTRACTHepatitis B virus (HBV) infects hundreds of millions of people worldwide and causes acute and chronic hepatitis, cirrhosis, and hepatocellular carcinoma. HBV is an enveloped virus with a relaxed circular (RC) DNA genome. In the nuclei of infected human hepatocytes, conversion of RC DNA from the incoming virion or cytoplasmic mature nucleocapsid (NC) to the covalently closed circular (CCC) DNA, which serves as the template for producing all viral transcripts, is essential to establish and sustain viral replication. A prerequisite for CCC DNA formation is the uncoating (disassembly) of NCs to expose their RC DNA content for conversion to CCC DNA. We report here that in an immortalized mouse hepatocyte cell line, AML12HBV10, in which RC DNA exposure is enhanced, the exposed viral DNA could trigger an innate immune response that was able to modulate viral gene expression and replication. When viral gene expression and replication were low, the innate response initially stimulated these processes but subsequently acted to shut off viral gene expression and replication after they reached peak levels. Inhibition of viral DNA synthesis or cellular DNA sensing and innate immune signaling diminished the innate response. These results indicate that HBV DNA, when exposed in the host cell cytoplasm, can function to trigger an innate immune response that, in turn, modulates viral gene expression and replication.IMPORTANCEChronic infection by hepatitis B virus (HBV) afflicts hundreds of millions worldwide and is sustained by the episomal covalently closed circular (CCC) DNA in the nuclei of infected hepatocytes. Release of viral genomic DNA from cytoplasmic nucleocapsids (NCs) (NC disassembly or uncoating) is a prerequisite for its conversion to CCC DNA, which can also potentially expose the viral DNA to host DNA sensors and trigger an innate immune response. We have found that in an immortalized mouse hepatocyte cell line in which efficient CCC DNA formation was associated with enhanced exposure of nucleocapsid-associated DNA, the exposed viral DNA indeed triggered host cytoplasmic DNA sensing and an innate immune response that was able to modulate HBV gene expression and replication. Thus, HBV can, under select conditions, be recognized by the host innate immune response through exposed viral DNA, which may be exploited therapeutically to clear viral persistence.


PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e49611 ◽  
Author(s):  
Oriel Nissim ◽  
Marta Melis ◽  
Giacomo Diaz ◽  
David E. Kleiner ◽  
Ashley Tice ◽  
...  

2015 ◽  
Vol 24 (4) ◽  
pp. 473-479 ◽  
Author(s):  
Mihai Voiculescu

Hepatitis B virus (HBV) infection is a major health problem with an important biological and a significant socio-economic impact all over the world. There is a high pressure to come up with a new and more efficient strategy against HBV infection, especially after the recent success of HCV treatment. Preventing HBV infection through vaccine is currently the most efficient way to decrease HBV-related cirrhosis and liver cancer incidence, as well as the best way to suppress the HBV reservoir. The vaccine is safe and efficient in 80-95% of cases. One of its most important roles is to reduce materno-fetal transmission, by giving the first dose of vaccine in the first 24 hours after birth. Transmission of HBV infection early in life is still frequent, especially in countries with high endemicity.Successful HBV clearance by the host is immune-mediated, with a complex combined innate and adaptive cellular and humoral immune response. Different factors, such as the quantity and the sequence of HBV epitope during processing by dendritic cells and presenting by different HLA molecules or the polymorphism of T cell receptors (TOL) are part of a complex network which influences the final response. A new potential therapeutic strategy is to restore T-cell antiviral function and to improve innate and adaptive immune response by immunotherapeutic manipulation.It appears that HBV eradication is far from being completed in the next decades, and a new strategy against HBV infection must be considered. Abbreviations: ALT: alanine aminotransferase; APC: antigen presenting cells; cccDNA: covalently closed circular DNA; HBIG: hepatitis B immunoglobulin; HbsAg: hepatitis B surface antigen; HBV: hepatitis B virus; HCC: hepatocellular carcinoma; CTL: cytotoxic T lymphocyte; IFN: interferon; NUC: nucleos(t)ide analogues; pg RNA: pre genomic RNA; TLR: toll-like receptors; TOL: T cell receptors.


1977 ◽  
Vol 73 (5) ◽  
pp. 1103-1106 ◽  
Author(s):  
M. Colombo ◽  
M.A. Gerber ◽  
S.J. Vernace ◽  
F. Gianotti ◽  
F. Paronetto

1996 ◽  
Vol 12 (1) ◽  
pp. 145-148 ◽  
Author(s):  
J. Fu ◽  
C.B. Parker ◽  
P. Burke ◽  
L.D. Schultz ◽  
D.L. Montgomery ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document