Investigation of Fatty Acid Composition Including Trans Fatty Acids and Erucic Acid in Selected Salty Snack Foods

Author(s):  
Tuğba Ozdal ◽  
Perihan Yolci Omeroglu



Author(s):  
Md. Delwar Hossain ◽  
Kamal Uddin Ahmed ◽  
Mst. Farhana Nazneen Chowdhury ◽  
Alak Barman ◽  
Arif Ahmed ◽  
...  

With a view to studying the qualitative features and the variations in fatty acid composition of 6 rapeseed (B. campestris and B. napus) and mustard (B. juncea) varieties, an experiment was conducted. Among these varieties, BARI Sarisha-14 presented the value of 168.4 which was recorded the highest. Both BARI Sarisha-11 and BARI Sarisha-14 was found with the highest iodine value of 39.44; and the highest amount of acid value was recorded from BARI Sarisha-11 (1.867). Gas-liquid chromatographic (GLC) method has been used to determine the composition of essential fatty acid in the seeds of Brassica spp. (L.). From the GLC analysis, it was found that erucic acid, oleic acid, linoleic acid and lenolenic acid were the prime fatty acids in all the varieties. Erucic acid was in the range of 41.11 – 51.28%, oleic acid was the highest both in BARI Sarisha-11 and BARI Sarisha- 13 contained (18.69%), while BARI Sarisha-9 contained the highest amount of the unsaturated linoleic (17.75%)  and linolenic (15.83%) acids. Moreover, palmitic acid, stearic acid and archidic acid were also present in small amount.



1999 ◽  
Vol 82 (5) ◽  
pp. 878-884 ◽  
Author(s):  
L. Alonso ◽  
J. Fontecha ◽  
L. Lozada ◽  
M.J. Fraga ◽  
M. Juárez


1959 ◽  
Vol 39 (4) ◽  
pp. 437-442 ◽  
Author(s):  
B. M. Craig ◽  
L. R. Wetter

The content of C16, C18, C20, C22 fatty acids were measured by gas liquid phase chromatography and linoleic and linolenic acids by spectral analyses on the oil from seven varieties of rapeseed grown at seven stations in Western Canada. Significant differences were found between varieties for all oil properties except the content of C16 acids. The major variation occurred in C18, C22 and linoleic acids with lesser amounts in the C20 and linolenic acids. The varieties Golden, Argentine, Regina II and Swedish are classed as high, Gute and Arlo as intermediate, and Polish as low erucic acid oils.



2003 ◽  
Vol 6 (1) ◽  
pp. 31-40 ◽  
Author(s):  
MC Nydahl ◽  
RD Smith ◽  
CNM Kelly ◽  
BA Fielding ◽  
CM Williams

AbstractObjectives:To describe the calculations and approaches used to design experimental diets of differing saturated fatty acid (SFA) and monounsaturated fatty acid (MUFA) compositions for use in a long-term dietary intervention study, and to evaluate the degree to which the dietary targets were met.Design, setting and subjects:Fifty-one students living in a university hall of residence consumed a reference (SFA) diet for 8 weeks followed by either a moderate MUFA (MM) diet or a high MUFA (HM) diet for 16 weeks. The three diets were designed to differ only in their proportions of SFA and MUFA, while keeping total fat, polyunsaturated fatty acids (PUFA),trans-fatty acids, and the ratio of palmitic to stearic acid, andn– 6 ton– 3 PUFA, unchanged.Results:Using habitual diet records and a standardised database for food fatty acid compositions, a sequential process of theoretical fat substitutions enabled suitable fat sources for use in the three diets to be identified, and experimental margarines for baking, spreading and the manufacture of snack foods to be designed. The dietary intervention was largely successful in achieving the fatty acid targets of the three diets, although unintended differences between the original target and the analysed fatty acid composition of the experimental margarines resulted in a lower than anticipated MUFA intake on the HM diet, and a lower ratio of palmitic to stearic acid compared with the reference or MM diet.Conclusions:This study has revealed important theoretical considerations that should be taken into account when designing diets of specific fatty acid composition, as well as practical issues of implementation.





2021 ◽  
Vol 15 (3) ◽  
Author(s):  
V. Papchenko ◽  
T. Matveeva ◽  
V. Khareba ◽  
O. Khareba

The main methods of obtaining fractionated oils and fats have been analysed. They involve three essentially different processes of fractionation of acylglycerols: dry fractionation, aqueous fractionation with a detergent, and solvent fractionation. Considerable attention has been paid to determining the conditions for fractionation of sunflower oil modified in its fatty acid composition. It has been emphasised that using stearic sunflower oil free from trans fatty acids as a source of fats is a topical task. The practical importance of complex research on fractional crystallisation of stearic sunflower oil has been substantiated. The experiments have allowed establishing the fatty acid and triacylglycerol composition of the oil of the new line of sunflower seeds of the saturated type Х114В (stearic type). The structure of its acylglycerols has been mathematically determined. Data have been obtained that besides the increased stearic acid content (9.1% of the total fatty acids), the oil under study also contains a significant amount of the disaturated–monounsaturated fraction of acylglycerols (6.16%). The method of fractionating sunflower oil of the stearic type, which has been scientifically substantiated, involves one-stage fractional crystallisation from the melt. The conditions of fractional crystallisation have been experimentally established: the crystallisation temperature range (+6 – +9°С), the crystallisation time (38 days), and the cooling rate (≈0.0051°С/s). The target fraction of sunflower oil of the stearic type has been obtained. It differs from the original oil in its fatty acid and acylglycerol composition. The yield of this oil fraction was 24.57%. It has been found that the fatty acid composition of this fraction has a content of palmitic acid increased by 0.9% and that of stearic acid higher by 3.3%, while its linoleic acid content decreased to 41.9%. The total amount of saturated fatty acids in the target fraction sample is 19.8% of all fatty acids. It has been found that the proportion of disaturated–monounsaturated acylglycerols in the target fraction increases by 3.27%. The resulting target fraction will be useful in flour and confectionery technologies as a substitute for fats containing trans fatty acids



Lipids ◽  
1989 ◽  
Vol 24 (7) ◽  
pp. 616-624 ◽  
Author(s):  
Jan Pettersen ◽  
Johannes Opstvedt


Sign in / Sign up

Export Citation Format

Share Document