scholarly journals Fatty Acid Composition of Caprine Milk: Major, Branched-Chain, and Trans Fatty Acids

1999 ◽  
Vol 82 (5) ◽  
pp. 878-884 ◽  
Author(s):  
L. Alonso ◽  
J. Fontecha ◽  
L. Lozada ◽  
M.J. Fraga ◽  
M. Juárez
2021 ◽  
Vol 15 (3) ◽  
Author(s):  
V. Papchenko ◽  
T. Matveeva ◽  
V. Khareba ◽  
O. Khareba

The main methods of obtaining fractionated oils and fats have been analysed. They involve three essentially different processes of fractionation of acylglycerols: dry fractionation, aqueous fractionation with a detergent, and solvent fractionation. Considerable attention has been paid to determining the conditions for fractionation of sunflower oil modified in its fatty acid composition. It has been emphasised that using stearic sunflower oil free from trans fatty acids as a source of fats is a topical task. The practical importance of complex research on fractional crystallisation of stearic sunflower oil has been substantiated. The experiments have allowed establishing the fatty acid and triacylglycerol composition of the oil of the new line of sunflower seeds of the saturated type Х114В (stearic type). The structure of its acylglycerols has been mathematically determined. Data have been obtained that besides the increased stearic acid content (9.1% of the total fatty acids), the oil under study also contains a significant amount of the disaturated–monounsaturated fraction of acylglycerols (6.16%). The method of fractionating sunflower oil of the stearic type, which has been scientifically substantiated, involves one-stage fractional crystallisation from the melt. The conditions of fractional crystallisation have been experimentally established: the crystallisation temperature range (+6 – +9°С), the crystallisation time (38 days), and the cooling rate (≈0.0051°С/s). The target fraction of sunflower oil of the stearic type has been obtained. It differs from the original oil in its fatty acid and acylglycerol composition. The yield of this oil fraction was 24.57%. It has been found that the fatty acid composition of this fraction has a content of palmitic acid increased by 0.9% and that of stearic acid higher by 3.3%, while its linoleic acid content decreased to 41.9%. The total amount of saturated fatty acids in the target fraction sample is 19.8% of all fatty acids. It has been found that the proportion of disaturated–monounsaturated acylglycerols in the target fraction increases by 3.27%. The resulting target fraction will be useful in flour and confectionery technologies as a substitute for fats containing trans fatty acids


2002 ◽  
Vol 68 (6) ◽  
pp. 2809-2813 ◽  
Author(s):  
David S. Nichols ◽  
Kirsty A. Presser ◽  
June Olley ◽  
Tom Ross ◽  
Tom A. McMeekin

ABSTRACT The fatty acid composition of Listeria monocytogenes Scott A was determined by close-interval sampling over the entire biokinetic temperature range. There was a high degree of variation in the percentage of branched-chain fatty acids at any given temperature. The percentage of branched C17 components increased with growth temperature in a linear manner. However, the percentages of iso-C15:0 (i15:0) and anteiso-C15:0 (a15:0) were well described by third-order and second-order polynomial curves, respectively. There were specific temperature regions where the proportion of branched-chain fatty acids deviated significantly from the trend established over the entire growth range. In the region from 12 to 13°C there were significant deviations in the percentages of both i15:0 and a15:0 together with a suggested deviation in a17:0, resulting in a significant change in the total branched-chain fatty acids. In the 31 to 33°C region the percentage of total branched-chain components exhibited a significant deviation. The observed perturbations in fatty acid composition occurred near the estimated boundaries of the normal physiological range for growth.


Sign in / Sign up

Export Citation Format

Share Document