In vitro effects of peanut skin polyphenolic extract on oxidative stress, adipogenesis and lipid accumulation

Author(s):  
Annayara C. F. Fernandes ◽  
Ádina L. Santana ◽  
Natália C. Vieira ◽  
Renata L. P. Gandra ◽  
Camila Rubia ◽  
...  

Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 212 ◽  
Author(s):  
Eliana Pintus ◽  
Martin Kadlec ◽  
Marija Jovičić ◽  
Markéta Sedmíková ◽  
José Ros-Santaella

Aminoguanidine is a selective inhibitor of the inducible nitric oxide synthase (iNOS) and a scavenger of reactive oxygen species (ROS). Numerous studies have shown the antioxidant properties of aminoguanidine in several cell lines, but the in vitro effects of this compound on spermatozoa under oxidative stress are unknown. In this study, we tested the hypothesis that aminoguanidine may protect against the detrimental effects of oxidative stress in boar spermatozoa. For this purpose, sperm samples were incubated with a ROS generating system (Fe2+/ascorbate) with or without aminoguanidine supplementation (10, 1, and 0.1 mM). Our results show that aminoguanidine has powerful antioxidant capacity and protects boar spermatozoa against the deleterious effects of oxidative stress. After 2 h and 3.5 h of sperm incubation, the samples treated with aminoguanidine showed a significant increase in sperm velocity, plasma membrane and acrosome integrity together with a reduced lipid peroxidation in comparison with control samples (p < 0.001). Interestingly, except for the levels of malondialdehyde, the samples treated with 1 mM aminoguanidine did not differ or showed better performance than control samples without Fe2+/ascorbate. The results from this study provide new insights into the application of aminoguanidine as an in vitro therapeutic agent against the detrimental effects of oxidative stress in semen samples.



1998 ◽  
Vol 87 (5) ◽  
pp. 1141-1146 ◽  
Author(s):  
J. P. De La Cruz ◽  
G. Sedeno ◽  
J. A. Carmona ◽  
F. Sanchez de la Cuesta




Amino Acids ◽  
2015 ◽  
Vol 47 (9) ◽  
pp. 1931-1939 ◽  
Author(s):  
Simone Sasso ◽  
Leticia Dalmedico ◽  
Débora Delwing-Dal Magro ◽  
Eduardo Manoel Pereira ◽  
Angela T. S. Wyse ◽  
...  


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
I Stadiotti ◽  
E Sommariva ◽  
M Casella ◽  
V Catto ◽  
A Dello Russo ◽  
...  

Abstract Background Arrhythmogenic Cardiomyopathy (ACM) is a genetic condition hallmarked by ventricular fibro-fatty replacement and arrhythmias. Cardiac mesenchymal stromal cells (C-MSC) differentiate into adipocytes in ACM hearts, through the activation of PPARγ, caused by ACM mutations (e.g. PKP2). The clinical phenotype of ACM is variable for poorly understood reasons. The only recognized cofactor is physical exercise, which is known to increases oxidative stress. An accepted marker of exercise-induced oxidative stress is 13HODE, a component of oxLDL and direct activator of PPARγ. In macrophages, during foam cell formation, 13HODE creates a feed-forward loop increasing both PPARγ and the oxLDL receptor CD36, resulting in fat accumulation. Purpose To investigate oxLDL effects on ACM adipogenesis and to dissect the involved pathways. Methods We analyzed plasmas (n=42) and ventricular tissues (n=4) of ACM patients and matched healthy controls (HC). For in vitro experiments, ACM and HC C-MSC (n=10) have been used, while in vivo experiments have been conducted in heterozygous Pkp2 knock-out mice (Pkp2+/−; n=10). Results We observed higher plasma oxLDL in ACM patients compared to HC (ACM 246.70±55.89 vs HC 102.5±17.95ng/ml; p=0.019). oxLDL levels also discriminate between ACM patients with overt phenotype and their unaffected relatives carriers of the same causative mutations (p=0.03). We observed higher oxidative stress (MDA intensity 40.87±11.76 fold; p=0.015) and CD36 levels (14.72±2.10 fold; p=0.0007) in ACM ventricular tissue, compared to HC. In basal conditions, ACM C-MSC showed greater oxidative stress (MDA intensity 8.83±2.78 fold p=0.017) and higher expression of PPARγ (1.47±0.14 fold; p=0.009) compared to HC C-MSC. The adipogenic stimulation led to a parallel increase of CD36 and lipid accumulation, mainly in ACM C-MSC (slopes statistically different p=0.016). OxLDL and 13HODE administration increased lipid accumulation in ACM C-MSC (ORO staining ACM vs ACM+oxLDL p=0.01; ACM vs ACM+13HODE p=0.014). On the contrary, the antioxidant N-Acetylcysteine (NAC) prevented lipid accumulation in ACM C-MSC (ORO staining ACM+13HODE vs ACM+13HODE+NAC p=0.0009). Through CD36 silencing of ACM C-MSC, we obtained a significantly lower lipid accumulation than non-silenced cells (ORO staining 0.35±0.10 fold; p=0.003). Pkp2+/− mice do not spontaneously accumulate adipocytes in the heart, however Pkp2+/− C-MSC are more prone to lipid accumulation in vitro than WT cells (p=0.007). Accordingly, mice have low plasma oxLDL and cardiac oxidative stress. By increasing plasma cholesterol and oxidative stress through high fat diet, we observed fibro-fatty substitution in Pkp2+/− hearts (p=0.046). Figure 1 Conclusions These findings reveal a modulatory role of oxidized lipids in ACM adipogenesis at a cellular, tissue and clinical level, enlightening novel targets for pharmacological strategies to prevent adipogenic substitution and consequent ACM clinical phenotypes. Acknowledgement/Funding Telethon Foundation; Italian Ministry of Health





2008 ◽  
Vol 131 (3) ◽  
pp. 327-345 ◽  
Author(s):  
Hao Jun ◽  
Zhao Song ◽  
Wang Chen ◽  
Rong Zanhua ◽  
Shi Yonghong ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document