scholarly journals A WRKY transcription factor confers aluminum tolerance via regulation of cell wall modifying genes

2020 ◽  
Vol 62 (8) ◽  
pp. 1176-1192 ◽  
Author(s):  
Chun Xiao Li ◽  
Jing Ying Yan ◽  
Jiang Yuan Ren ◽  
Li Sun ◽  
Chen Xu ◽  
...  
2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Fangwei Yu ◽  
Shenyun Wang ◽  
Wei Zhang ◽  
Hong Wang ◽  
Li Yu ◽  
...  

Abstract The members of myeloblastosis transcription factor (MYB TF) family are involved in the regulation of biotic and abiotic stresses in plants. However, the role of MYB TF in phosphorus remobilization remains largely unexplored. In the present study, we show that an R2R3 type MYB transcription factor, MYB103, is involved in phosphorus (P) remobilization. MYB103 was remarkably induced by P deficiency in cabbage (Brassica oleracea var. capitata L.). As cabbage lacks the proper mutant for elucidating the mechanism of MYB103 in P deficiency, another member of the crucifer family, Arabidopsis thaliana was chosen for further study. The transcript of its homologue AtMYB103 was also elevated in response to P deficiency in A. thaliana, while disruption of AtMYB103 (myb103) exhibited increased sensitivity to P deficiency, accompanied with decreased tissue biomass and soluble P concentration. Furthermore, AtMYB103 was involved in the P reutilization from cell wall, as less P was released from the cell wall in myb103 than in wildtype, coinciding with the reduction of ethylene production. Taken together, our results uncover an important role of MYB103 in the P remobilization, presumably through ethylene signaling.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaolong Hao ◽  
Chenhong Xie ◽  
Qingyan Ruan ◽  
Xichen Zhang ◽  
Chao Wu ◽  
...  

AbstractThe limited bioavailability of plant-derived natural products with anticancer activity poses major challenges to the pharmaceutical industry. An example of this is camptothecin, a monoterpene indole alkaloid with potent anticancer activity that is extracted at very low concentrations from woody plants. Recently, camptothecin biosynthesis has been shown to become biotechnologically amenable in hairy-root systems of the natural producer Ophiorrhiza pumila. Here, time-course expression and metabolite analyses were performed to identify novel transcriptional regulators of camptothecin biosynthesis in O. pumila. It is shown here that camptothecin production increased over cultivation time and that the expression pattern of the WRKY transcription factor encoding gene OpWRKY2 is closely correlated with camptothecin accumulation. Overexpression of OpWRKY2 led to a more than three-fold increase in camptothecin levels. Accordingly, silencing of OpWRKY2 correlated with decreased camptothecin levels in the plant. Further detailed molecular characterization by electrophoretic mobility shift, yeast one-hybrid and dual-luciferase assays showed that OpWRKY2 directly binds and activates the central camptothecin pathway gene OpTDC. Taken together, the results of this study demonstrate that OpWRKY2 acts as a direct positive regulator of camptothecin biosynthesis. As such, a feasible strategy for the over-accumulation of camptothecin in a biotechnologically amenable system is presented.


2005 ◽  
Vol 58 (1) ◽  
pp. 305-319 ◽  
Author(s):  
Robbert A. Damveld ◽  
Mark Arentshorst ◽  
Angelique Franken ◽  
Patricia A. VanKuyk ◽  
Frans M. Klis ◽  
...  

2017 ◽  
Vol 3 (5) ◽  
pp. 190-198 ◽  
Author(s):  
Wei WEI ◽  
Zhongqi FAN ◽  
Jianye CHEN ◽  
Jianfei KUANG ◽  
Wangjin LU ◽  
...  

Plant Science ◽  
2021 ◽  
pp. 111148
Author(s):  
Xiaoqian Liu ◽  
Yuming Yang ◽  
Ruiyang Wang ◽  
Ruifan Cui ◽  
Huanqing Xu ◽  
...  

2003 ◽  
Vol 15 (9) ◽  
pp. 2076-2092 ◽  
Author(s):  
Chuanxin Sun ◽  
Sara Palmqvist ◽  
Helena Olsson ◽  
Mats Borén ◽  
Staffan Ahlandsberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document