scholarly journals Absence of the mitochondrial translocator protein 18 kDa in mice does not affect body weight or food intake responses to altered energy availability

Author(s):  
Nicole A Morrissey ◽  
Craig Beall ◽  
Kate LJ Ellacott
2015 ◽  
Vol 114 (7) ◽  
pp. 1013-1025 ◽  
Author(s):  
Alison O. Booth ◽  
Catherine E. Huggins ◽  
Naiyana Wattanapenpaiboon ◽  
Caryl A. Nowson

This meta-analysis of randomised controlled trials assessed the effect of Ca on body weight and body composition through supplementation or increasing dairy food intake. Forty-one studies met the inclusion criteria (including fifty-one trial arms; thirty-one with dairy foods (n 2091), twenty with Ca supplements (n 2711). Ca intake was approximately 900 mg/d higher in the supplement groups compared with control. In the dairy group, Ca intake was approximately 1300 mg/d. Ca supplementation did not significantly affect body weight (mean change ( − 0·17, 95 % CI − 0·70, 0·37) kg) or body fat (mean change ( − 0·19, 95 % CI − 0·51, 0·13) kg) compared to control. Similarly, increased dairy food intake did not affect body weight ( − 0·06, 95 % CI − 0·54, 0·43) kg or body fat change ( − 0·36, 95 % CI − 0·80, 0·09) kg compared to control. Sub-analyses revealed that dairy supplementation resulted in no change in body weight (nineteen studies, n 1010) ( − 0·32, 95 % CI − 0·93, 0·30 kg, P= 0·31), but a greater reduction in body fat (thirteen studies, n 564) ( − 0·96, 95 % CI − 1·46, − 0·46 kg, P < 0·001) in the presence of energy restriction over a mean of 4 months compared to control. Increasing dietary Ca intake by 900 mg/d as supplements or increasing dairy intake to approximately 3 servings daily (approximately 1300 mg of Ca/d) is not an effective weight reduction strategy in adults. There is, however, an indication that approximately 3 servings of dairy may facilitate fat loss on weight reduction diets in the short term.


2021 ◽  
Author(s):  
Gabriel Henrique Marques Gonçalves ◽  
Sabrina Mara Tristão ◽  
Rafaella Eduarda Volpi ◽  
Gislaine Almeida-Pereira ◽  
Beatriz de Carvalho Borges ◽  
...  

Leptin plays an important role in the protection against diet-induced obesity (DIO) by its actions in ventromedial hypothalamic (VMH) neurons. However, little is known about the intracellular mechanisms involved in these effects. To assess the role of the STAT3 and ERK2 signaling in neurons that express the steroidogenic factor 1 (SF1) in the VMH on energy homeostasis, we used cre-lox technology to generate male and female mice with specific disruption of STAT3 or ERK2 in SF1 neurons of the VMH. We demonstrated that the conditional knockout of STAT3 in SF1 neurons of the VMH did not affect body weight, food intake, energy expenditure and glucose homeostasis in animals on regular chow. However, when challenged with high-fat diet (HFD), loss of STAT3 in SF1 neurons caused a significant increase in body weight, food intake and energy efficiency that was more remarkable in females which also showed a decrease in energy expenditure. In contrast, deletion of ERK2 in SF1 neurons of VMH did not have any impact on energy homeostasis in both regular diet and HFD conditions. In conclusion, STAT3 but not ERK2 signaling in SF1 neurons of VMH plays a crucial role to protect against DIO in a sex-specific pattern.


2021 ◽  
Author(s):  
Gabriel Henrique Marques Gonçalves ◽  
Sabrina Mara Tristão ◽  
Rafaella Eduarda Volpi ◽  
Gislaine Almeida-Pereira ◽  
Beatriz de Carvalho Borges ◽  
...  

Leptin plays an important role in the protection against diet-induced obesity (DIO) by its actions in ventromedial hypothalamic (VMH) neurons. However, little is known about the intracellular mechanisms involved in these effects. To assess the role of the STAT3 and ERK2 signaling in neurons that express the steroidogenic factor 1 (SF1) in the VMH on energy homeostasis, we used cre-lox technology to generate male and female mice with specific disruption of STAT3 or ERK2 in SF1 neurons of the VMH. We demonstrated that the conditional knockout of STAT3 in SF1 neurons of the VMH did not affect body weight, food intake, energy expenditure and glucose homeostasis in animals on regular chow. However, when challenged with high-fat diet (HFD), loss of STAT3 in SF1 neurons caused a significant increase in body weight, food intake and energy efficiency that was more remarkable in females which also showed a decrease in energy expenditure. In contrast, deletion of ERK2 in SF1 neurons of VMH did not have any impact on energy homeostasis in both regular diet and HFD conditions. In conclusion, STAT3 but not ERK2 signaling in SF1 neurons of VMH plays a crucial role to protect against DIO in a sex-specific pattern.


1973 ◽  
Author(s):  
William W. Beatty ◽  
Thomas R. Vilberg ◽  
Paul B. Revland

2006 ◽  
Vol 33 (S 1) ◽  
Author(s):  
C.G. Bachmann ◽  
C. Werner ◽  
E. Brunner ◽  
C. Trenkwalder

2007 ◽  
Vol 2 (S 1) ◽  
Author(s):  
L Plum ◽  
M Matsumoto ◽  
D Accili
Keyword(s):  

2012 ◽  
Vol 12 (4) ◽  
pp. 369-386 ◽  
Author(s):  
J. Fan ◽  
P. Lindemann ◽  
M. G.J. Feuilloley ◽  
V. Papadopoulos

Sign in / Sign up

Export Citation Format

Share Document