Prevention versus cure: Is BioGlue priming the optimal strategy against E‐Vita NEO graft oozing?

Author(s):  
Sven Z. C. P. Tan ◽  
Mohamad Bashir
Keyword(s):  
1986 ◽  
Vol 25 (04) ◽  
pp. 207-214 ◽  
Author(s):  
P. Glasziou

SummaryThe development of investigative strategies by decision analysis has been achieved by explicitly drawing the decision tree, either by hand or on computer. This paper discusses the feasibility of automatically generating and analysing decision trees from a description of the investigations and the treatment problem. The investigation of cholestatic jaundice is used to illustrate the technique.Methods to decrease the number of calculations required are presented. It is shown that this method makes practical the simultaneous study of at least half a dozen investigations. However, some new problems arise due to the possible complexity of the resulting optimal strategy. If protocol errors and delays due to testing are considered, simpler strategies become desirable. Generation and assessment of these simpler strategies are discussed with examples.


Infectio ro ◽  
2018 ◽  
Vol 56 (4) (1) ◽  
pp. 9-21
Author(s):  
Ștefan-Sorin Aramă

Irritable bowel syndrome is a frequent digestive condition, with an unclear etiopathogeny. Very probably intestinal dysbiosis plays an important role. For the moment there are no guidelines for treatment. There is scientific evidence for several therapies: modification of diet, non-resorbable antibiotics (rifaximin-α) and probiotics. Giving probiotics after each antibiotic course (an association of Bifidobacterium longum BB536 and Lactobacillus rhamnosus HN001) supplemented with vitamin B6 may be an optimal strategy.


Author(s):  
Dui Hongyan ◽  
Zhang Chi

Background : Taxi sharing is an emerging transportation arrangement that helps improve the passengers’ travel efficiency and reduce costs. This study proposes an urban taxi sharing system. Methods: Considering each side congestion of the transport network, their corresponding reliability and failure probability are analyzed. Under the constraints of the number of passengers and their own time windows, the analysis is performed on passengers whose optimal path is inclusive. Results: According to the optimal strategy, the different passengers can be arranged into the same taxi to realize the taxi sharing. Then the shared taxi route can be optimized. Conclusion: Due to the reasonable vehicle route planning and passenger combination, these can effectively alleviate the traffic congestion, save the driving time, reduce the taxi no-load rate, and save the driving distance. At last, a numerical example is used to demonstrate the proposed method.


2020 ◽  
Vol 366 ◽  
pp. 124732 ◽  
Author(s):  
Dhiraj Kumar Das ◽  
Subhas Khajanchi ◽  
T.K. Kar

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Dylan H. Morris ◽  
Fernando W. Rossine ◽  
Joshua B. Plotkin ◽  
Simon A. Levin

AbstractIn the absence of drugs and vaccines, policymakers use non-pharmaceutical interventions such as social distancing to decrease rates of disease-causing contact, with the aim of reducing or delaying the epidemic peak. These measures carry social and economic costs, so societies may be unable to maintain them for more than a short period of time. Intervention policy design often relies on numerical simulations of epidemic models, but comparing policies and assessing their robustness demands clear principles that apply across strategies. Here we derive the theoretically optimal strategy for using a time-limited intervention to reduce the peak prevalence of a novel disease in the classic Susceptible-Infectious-Recovered epidemic model. We show that broad classes of easier-to-implement strategies can perform nearly as well as the theoretically optimal strategy. But neither the optimal strategy nor any of these near-optimal strategies is robust to implementation error: small errors in timing the intervention produce large increases in peak prevalence. Our results reveal fundamental principles of non-pharmaceutical disease control and expose their potential fragility. For robust control, an intervention must be strong, early, and ideally sustained.


Sign in / Sign up

Export Citation Format

Share Document