Pathotypes of Colletotrichum sublineolum in Response to Sorghum Populations with Different Levels of Genetic Diversity in Sete Lagoas-MG

2014 ◽  
Vol 163 (7-8) ◽  
pp. 543-553 ◽  
Author(s):  
Rodrigo V. Costa ◽  
Laércio Zambolim ◽  
Luciano V. Cota ◽  
Dagma D. Silva ◽  
Douglas F. Parreira ◽  
...  
mBio ◽  
2012 ◽  
Vol 3 (4) ◽  
Author(s):  
Jan O. Haerter ◽  
Kim Sneppen

ABSTRACT Even within similar bacterial strains, it has been found that the clustered, regularly interspaced short palindromic repeat (CRISPR) shows a large variability of spacers. Modeling bacterial strains with different levels of immunity to infection by a single virulent phage, we find that coexistence in a well-mixed environment is possible only when these levels are distinctly different. When bacterial strains are similar, one subpopulation collapses. In the case of bacteria with various levels of CRISPR immunity to a range of phages, small differences in spacer composition will accordingly be suppressed under well-mixed conditions. Using a numerical model of populations spreading in space, we predict that it is the Lamarckian nature of CRISPR evolution that combines with spatial correlations to sustain the experimentally observed distribution of spacer diversity.


2012 ◽  
Vol 63 (12) ◽  
pp. 1124 ◽  
Author(s):  
V. Copani ◽  
G. Testa ◽  
A. Lombardo ◽  
S. L. Cosentino

Several morphological and agronomic traits and the genetic diversity of nine Dactylis glomerata L. populations collected throughout Sicily (semi-arid Mediterranean environment) were evaluated for two successive years. Significant differences were recorded for morphological traits (plant height, leaf length, leaf width). In relation to the measurement of summer dormancy, the results suggest the expression of different levels of dormancy (completely dormant, semi-dormant, and non-dormant). For biomass yield, some Sicilian populations (SD63 and SD56) characterised by low levels of summer dormancy show production levels similar to the summer-active control varieties (Medly and Porto). However, SD46, with a much higher level of dormancy, gave biomass yield higher than the summer-dormant control variety (Kasbah). The genetic diversity evaluated by fAFLP analysis confirms the observed morphological and agronomic variability.


Plant Disease ◽  
2011 ◽  
Vol 95 (10) ◽  
pp. 1292-1301 ◽  
Author(s):  
M. I. Siri ◽  
A. Sanabria ◽  
M. J. Pianzzola

Bacterial wilt, caused by Ralstonia solanacearum, is a major disease affecting potato (Solanum tuberosum) production worldwide. Although local reports suggest that the disease is widespread in Uruguay, characterization of prevalent R. solanacearum strains in that country has not been done. In all, 28 strains of R. solanacearum isolated from major potato-growing areas in Uruguay were evaluated, including 26 strains isolated from potato tubers and 2 from soil samples. All strains belonged to phylotype IIB, sequevar 1 (race 3, biovar 2). Genetic diversity of strains was assessed by repetitive-sequence polymerase chain reaction, which showed that the Uruguayan strains constituted a homogeneous group. In contrast, inoculation of the strains on tomato and potato plants showed, for the first time, different levels of aggressiveness among R. solanacearum strains belonging to phylotype IIB, sequevar 1. Aggressiveness assays were also performed on accessions of S. commersonii, a wild species native to Uruguay that is a source of resistance for potato breeding. No significant interactions were found between bacterial strains and potato and S. commersonii genotypes, and differences in aggressiveness among R. solanacearum strains were consistent with previously identified groups based on tomato and potato inoculations. Moreover, variation in responses to R. solanacearum was observed among the S. commersonii accessions tested.


2021 ◽  
Author(s):  
Furqan Awan ◽  
Muhammad Muddassir Ali ◽  
Muhammad Hassan Mushtaq ◽  
Muhammad Ijaz

Staphylococcus aureus (S. aureus) has been a substantial economic problem due to its antibiotic resistance, persistence inside host and recurrence of disease. It escapes from immunity because of its intra-cellular growth. Moreover, it forms biofilm on both living and in-animate surfaces that leads to recurrent infections and growth in food industry, respectively. Further, S. aureus undergoes the vertical and horizontal evolution that has genetically diversified the bacterial population. All the factors such as point mutations, plasmids, phages etc. have played their roles in diversifying this bacterium. Many bacterial physiological characteristics have been affected by genetic diversity. Biofilm forming ability is also considered as a variable characteristic of S. aureus that can help the bacteria to survive in different environments with different levels of biofilm production. In adapting the environment, S. aureus also forms different types of biofilm for its better survival. How genetic diversity is playing its role in this division of S. aureus is yet to be revealed. This chapter focuses on the factors related to genetic diversity and biofilm formation of S. aureus.


2006 ◽  
Vol 5 (2) ◽  
pp. 304-318
Author(s):  
J.E.F. Figueiredo ◽  
H.C. Depaoli ◽  
V.T.S. Coelho ◽  
C.R. Casela ◽  
A.S. Ferreira ◽  
...  

2020 ◽  
Author(s):  
Desalegn D. Serba ◽  
Ghislain Kanfany ◽  
Davina Rhodes ◽  
Paul St. Amand ◽  
Amy Bernardo ◽  
...  

Abstract Background: Genetic improvement of pearl millet is lagging behind most of the major crops. Development of genomic resources is expected to expedite breeding for improved agronomic traits, stress tolerance, yield, and nutritional quality. Genotyping a breeding population with high throughput markers enables exploration of genetic diversity, population structure, and linkage disequilibrium (LD) which are important preludes for marker-trait association studies and application of genomic-assisted breeding. Results: Genotyping-by-sequencing (GBS) libraries of 309 inbred lines derived from landraces and improved varieties from Africa and India generated 54,770 high quality single nucleotide polymorphism (SNP) markers. On average one SNP per 29 Kb was mapped in the reference genome, with the telomeric regions more densely mapped than the pericentromeric regions of the chromosomes. Population structure analysis using 30,208 SNPs evenly distributed in the genome divided 309 accessions into five subpopulations with different levels of admixture. Pairwise genetic distance (GD) between accessions varied from 0.09 to 0.33 with the average distance of 0.28. Rapid LD decay implied low tendency of markers inherited together. Genetic differentiation estimates were the highest between subgroups 4 and 5, and the lowest between subgroups 1 and 2. Conclusions: Population genomic analysis of pearl millet inbred lines derived from diverse geographic and agroecological features identified five subgroups mostly following pedigree differences with different levels of admixture. It also revealed the prevalence of high genetic diversity in pearl millet, which is very useful in defining heterotic groups for hybrid breeding, trait mapping, and holds promise for improving pearl millet for yield and nutritional quality. The short LD decay observed suggests an absence of persistent haplotype blocks in pearl millet. The diverse genetic background of these lines and their low LD make this set of germplasm useful for traits mapping.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Rongmin Guo ◽  
Lihua Zhou ◽  
Hongbo Zhao ◽  
Fadi Chen

OpisthopappusShih is endemic to the Taihang Mountains, China. It grows in the crevice of cliffs and is in fragmented distribution. This genus consists of two species, namely,O. taihangensis(Ling) Shih andO. longilobusShih, which are both endangered plants in China. This study adopted intersimple sequence repeat markers (ISSR) to analyze the genetic diversity and genetic structure from different levels (genus, species, and population) in this genus. A total of 253 loci were obtained from 27 primers, 230 of which were polymorphic loci with a proportion of polymorphic bands (PPB) of up to 90.91% at genus level. At species level, bothO. taihangensis(PPB=90.12%,H=0.1842, andI=0.289) andO. longilobus(PPB=95.21%,H=0.2226, andI=0.3542) have high genetic diversity. Their respective genetic variation mostly existed within the population. And genetic variation inO. longilobus(84.95%) was higher than that inO. taihangensis(80.45%). A certain genetic differentiation among populations inO. taihangensiswas found (Gst=0.2740,Φst=0.196) and genetic differentiation inO. longilobuswas very small (Gst=0.1034,Φst=0.151). Gene flow in different degrees (Nm=1.325and 4.336, resp.) and mating system can form the existing genetic structures of these two species. Furthermore, genetic differentiation coefficient (Gst=0.0453) between species and the clustering result based on the genetic distance showed that interspecific differentiation betweenO. taihangensisandO. longilobuswas not significant and could occur lately.


2020 ◽  
Vol 12 (2) ◽  
pp. 613
Author(s):  
Abdul Rehman Khan ◽  
Isabelle Goldringer ◽  
Mathieu Thomas

As the effects of climate change begin to be felt on yield stability, it is becoming essential to promote the use of genetic diversity in farmers’ fields. The presence of genetic variability in variety could fulfil this purpose. Indeed, the level of intra-varietal genetic diversity influences the spatio-temporal stability of yields and the disease susceptibility of crop species. Breeding history of varieties and their management practices are two factors that should influence intra-varietal genetic diversity. This paper describes the genetic diversity of eight wheat samples covering a gradient from modern single varieties to on-farm mixtures of landraces. This gradient discriminates between landrace, historical and modern varieties, considering the breeding history of varieties, between single-varieties and mixtures of varieties, and between ex situ and in situ de facto strategy in terms of management practices. Genetic diversity of these samples was analyzed with the help of 41 single nucleotide polymorphism markers located in neutral regions, through computing genetic indices at three different levels: Allelic, haplotypic and genetic group level. Population structure and kinship were depicted using discriminant analysis and kinship network analysis. Results revealed an increase in the complexity of the genetic structure as we move on the gradient of variety types (from modern single variety to in situ on-farm mixtures of landraces). For the landraces, the highest levels of genetic diversity have been observed for a landrace (Solina d’Abruzzo) continuously grown on-farm in the region of Abruzzo, in Italy, for many decades. This landrace showed an excess of haplotypic diversity compared to landraces or the historical variety that were stored in genebanks (ex situ conservation). Genetic analyses of the mixtures revealed that, despite a very high selfing rate in wheat, growing in evolutionary mixtures promotes recombination between different genetic components of the mixture, a second way to increase the level of haplotype diversity. When management practices such as growing in mixture and on-farm management are combined, they substantially increase the different levels of genetic diversity of the populations (allelic, haplotypic, genetic group diversity), and consequently promote their adaptability. Our results confirm the need to develop and manage evolving diversified large populations on-farm. These results invite crop diversity managers such as genebank curators, community seed bank managers and farmers’ organizations to adapt their management strategies to the type of variety they wish to manage, because we have shown that their choices have a strong influence on the genetic composition of the crop populations.


2014 ◽  
Vol 58 (2) ◽  
pp. 87-97 ◽  
Author(s):  
Dariusz Gerula ◽  
Paweł Węgrzynowicz ◽  
Beata Panasiuk ◽  
Małgorzata Bieńkowska ◽  
Wojciech Skowronek

Abstract The aim of the study was to determine the effect of honey bee worker diversity within the colony on: development, honey productivity, and wintering. Two different levels of diversity within the colony were tested. The appropriate levels of diversity within the colony were obtained by selecting drones for inseminating the queens. Lower genetic diversity was obtained in the colonies headed by a queen inseminated with semen collected from drones originating from a single colony. Higher genetic diversity was obtained in the colonies with queens inseminated with semen from drones of 30 different colonies. Colonies with a higher genetic variation of workers in the colonies had greater levels of functional characteristics. However, apart from the number of dead bees in winter, the genetic diversity level of the workers on the colony development and honey production, did not have a significant influence. There was an averaging effect observed concerning that male component in the colonies with a higher genetic variation of workers - on honey yield, when compared to the non-additive effect of the best drones.


2016 ◽  
Vol 32 (2) ◽  
pp. 146-157 ◽  
Author(s):  
Bárbara Cruz-Salazar ◽  
Lorena Ruiz-Montoya ◽  
Ella Vázquez-Domínguez ◽  
Darío Navarrete-Gutiérrez ◽  
Eduardo E. Espinoza-Medinilla ◽  
...  

Abstract:The Virginia opossum (Didelphis virginiana) is considered highly adaptable to anthropogenic disturbances; however, the genetic effects of disturbance on this marsupial have not been studied in wild populations in Mexico. Here we evaluated the genetic diversity of D. virginiana at sites with different levels of disturbance within the Highlands and Central Depression regions of Chiapas in southern Mexico. Twelve microsatellite loci were used and the results demonstrated moderate mean heterozygosity (He = 0.60; Ho = 0.50). No significant differences in heterozygosity were found among sites with different levels of disturbance in both regions (range Ho = 0.42–0.57). We observed low but significant levels of genetic differentiation according to disturbance level. The inbreeding coefficient did not differ significantly from zero, suggesting that low genetic differentiation in these environments may be associated with sufficient random mating and gene flow, a result associated with the high dispersal and tolerance characteristics of this marsupial. Our results for D. virginiana in this particular area of Mexico provide a foundation for exploring the impact of human disturbance on the genetic diversity of a common and generalist species.


Sign in / Sign up

Export Citation Format

Share Document