The ranked species occupancy curves reflect the dominant process of species sorting: evidence from forest/scrub communities

Author(s):  
Dan Gafta ◽  
Ilie‐Adrian Stoica ◽  
Gheorghe Coldea
2012 ◽  
Vol 2 (2) ◽  
pp. 79-86 ◽  
Author(s):  
James W. McKinley ◽  
Rebecca E. Parzen ◽  
Álvaro Mercado Guzmán

Urine-diversion dehydration toilets (UDDT) are common throughout the developing world, and the toilet product is widely used as compost. There is no comprehensive research to date that characterizes the compost to determine its quality, extent of pathogen inactivation, and the effects of climate and bulking materials on the compost. Compost was collected from 45 UDDT in Bolivia and analyzed for physical, chemical, and biological parameters. Eighty percent and 56% of samples did not meet acceptable compost guidelines for moisture content and pH, respectively, indicating desiccation was the dominant process in UDDT. Bulking materials significantly impacted compost characteristics in terms of pH, carbon, carbon-to-nitrogen ratio, and carbon stability (P < 0.05). Composts with ash exhibited, on average, low carbon concentrations (4.9%) and high pH values (9.7), which can be harmful to plants and composting microorganisms. Composts with sawdust exhibited, on average, high carbon concentrations (40.0%) and carbon-to-nitrogen ratios (31.0). Climate had no significant impact on chemical characteristics, however composts from humid regions had significantly higher moisture contents (34.4%) than those from arid climates (24.8%) (P < 0.05). Viable Ascaris lumbricoides ova were identified in 31% of samples, including samples with high pH, low moisture contents, and long storage times.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Min Sung Kim ◽  
Seok Hyun Ahn ◽  
In Jae Jeong ◽  
Tae Kwon Lee

AbstractThe metacommunity approach provides insights into how the biological communities are assembled along the environmental variations. The current study presents the importance of water quality on the metacommunity structure of algal communities in six river-connected lakes using long-term (8 years) monitoring datasets. Elements of metacommunity structure were analyzed to evaluate whether water quality structured the metacommunity across biogeographic regions in the riverine ecosystem. The algal community in all lakes was found to exhibit Clementsian or quasi-Clementsian structure properties such as significant turnover, grouped and species sorting indicating that the communities responded to the environmental gradient. Reciprocal averaging clearly classified the lakes into three clusters according to the geographical region in river flow (upstream, midstream, and downstream). The dispersal patterns of algal genera, including Aulacoseira, Cyclotella, Stephanodiscus, and Chlamydomonas across the regions also supported the spatial-based classification results. Although conductivity, chemical oxygen demand, and biological oxygen demand were found to be important variables (loading > |0.5|) of the entire algal community assembly, water temperature was a critical factor in water quality associated with community assembly in each geographical area. These results support the notion that the structure of algal communities is strongly associated with water quality, but the relative importance of variables in structuring algal communities differed by geological regions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dimitri Kalenitchenko ◽  
Erwan Peru ◽  
Pierre E. Galand

AbstractPredicting ecosystem functioning requires an understanding of the mechanisms that drive microbial community assembly. Many studies have explored microbial diversity extensively and environmental factors are thought to be the principal drivers of community composition. Community assembly is, however, also influenced by past conditions that might affect present-day assemblages. Historical events, called legacy effects or historical contingencies, remain poorly studied in the sea and their impact on the functioning of the communities is not known. We tested the influence, if any, of historical contingencies on contemporary community assembly and functions in a marine ecosystem. To do so, we verified if different inoculum communities colonizing the same substrate led to communities with different compositions. We inoculated wood with sea water microbes from different marine environments that differ in ecological and evolutionary history. Using 16S rRNA and metagenomic sequencing, it was demonstrated that historical contingencies change the composition and potential metabolisms of contemporary communities. The effect of historical events was transient, dominated by environmental selection as, over time, species sorting was a more important driver of community assembly. Our study shows not only that historical contingencies affect marine ecosystems but takes the analysis a step further by characterizing this effect as strong but transient.


Paleobiology ◽  
2021 ◽  
pp. 1-15
Author(s):  
Dana S. Friend ◽  
Brendan M. Anderson ◽  
Warren D. Allmon

Abstract Rates of speciation and extinction are often linked to many ecological factors, traits (emergent and nonemergent) such as environmental tolerance, body size, feeding type, and geographic range. Marine gastropods in particular have been used to examine the role of larval dispersal in speciation. However, relatively few studies have been conducted placing larval modes in species-level phylogenetic context. Those that have, have not incorporated fossil data, while landmark macroevolutionary studies on fossil clades have not considered both phylogenetic context and net speciation (speciation–extinction) rates. This study utilizes Eocene volutid Volutospina species from the U.S. Gulf Coastal Plain and the Hampshire Basin, U.K., to explore the relationships among larval mode, geographic range, and duration. Based on the phylogeny of these Volutospina, we calculated speciation and extinction rates in order to compare the macroevolutionary effects of larval mode. Species with planktotrophic larvae had a median duration of 9.7 Myr, which compared significantly to 4.7 Myr for those with non-planktotrophic larvae. Larval mode did not significantly factor into geographic-range size, but U.S. and U.K. species do differ, indicating a locality-specific component to maximum geographic-range size. Non-planktotrophs (NPTs)were absent among the Volutospina species during the Paleocene–early Eocene. The relative proportions of NPTs increased in the early middle Eocene, and the late Eocene was characterized by disappearance of planktotrophs (PTs). The pattern of observed lineage diversity shows an increasing preponderance of NPTs; however, this is clearly driven by a dramatic extinction of PTs, rather than higher NPT speciation rates during the late Eocene. This study adds nuance to paleontology's understanding of the macroevolutionary consequences of larval mode.


1979 ◽  
Vol 83 ◽  
pp. 431-445 ◽  
Author(s):  
Peter S. Conti

The stellar wind mass loss rates of at least some single Of type stars appear to be sufficient to remove much if not all of the hydrogen-rich envelope such that nuclear processed material is observed at the surface. This highly evolved state can then be naturally associated with classic Population I WR stars that have properties of high luminosity for their mass, helium enriched composition, and nitrogen or carbon enhanced abundances. If stellar wind mass loss is the dominant process involved in this evolutionary scenario, then stars with properties intermediate between Of and WR types should exist. The stellar parameters of luminosity, temperature, mass and composition are briefly reviewed for both types. All late WN stars so far observed are relatively luminous like Of stars, and also contain hydrogen. All early WN stars, and WC stars, are relatively faint and contain little or no hydrogen. The late WN stars seem to have the intermediate properties required if a stellar wind is the dominant mass loss mechanism that transforms an Of star to a WR type.


Science ◽  
2021 ◽  
Vol 371 (6529) ◽  
pp. 633-636 ◽  
Author(s):  
E. A. Riddell ◽  
K. J. Iknayan ◽  
L. Hargrove ◽  
S. Tremor ◽  
J. L. Patton ◽  
...  

High exposure to warming from climate change is expected to threaten biodiversity by pushing many species toward extinction. Such exposure is often assessed for all taxa at a location from climate projections, yet species have diverse strategies for buffering against temperature extremes. We compared changes in species occupancy and site-level richness of small mammal and bird communities in protected areas of the Mojave Desert using surveys spanning a century. Small mammal communities remained remarkably stable, whereas birds declined markedly in response to warming and drying. Simulations of heat flux identified different exposure to warming for birds and mammals, which we attribute to microhabitat use. Estimates from climate projections are unlikely to accurately reflect species’ exposure without accounting for the effects of microhabitat buffering on heat flux.


Ecology ◽  
2021 ◽  
Author(s):  
Hannah L. Clipp ◽  
Amber L. Evans ◽  
Brin E. Kessinger ◽  
Kenneth Kellner ◽  
Christopher T. Rota

2009 ◽  
Vol 59 (2) ◽  
pp. 241-247 ◽  
Author(s):  
K. Sekyiamah ◽  
H. Kim

A wastewater treatment plant consists of unit processes designed to achieve specific waste reduction goals. Offensive odors associated with these treatment processes are a constant source of public complaints. The purpose of this study was to statistically determine the process parameters that influence the formation of volatile sulfur compounds (VSCs) in the secondary treatment system. A statistical model was developed to relate the process parameters to the formation of VSCs in this system. The model established that F/M ratio, sludge blanket depth and SSV60 were the dominant process parameters that influenced the formation of VSCs in the secondary sedimentation basin. This model provides a useful tool for plant engineers to predict and control the VSC formation in a secondary activated sludge treatment system.


Sign in / Sign up

Export Citation Format

Share Document