Solid lipid nanoparticles carrying Eugenia caryophyllata essential oil: the novel nanoparticulate systems with broad-spectrum antimicrobial activity

2018 ◽  
Vol 66 (6) ◽  
pp. 506-513 ◽  
Author(s):  
B.S. Fazly Bazzaz ◽  
B. Khameneh ◽  
N. Namazi ◽  
M. Iranshahi ◽  
D. Davoodi ◽  
...  
2019 ◽  
Vol 44 (2) ◽  
pp. 180-186
Author(s):  
M. Taha ◽  
M. EL-Dannasoury ◽  
S. Mahmoud ◽  
M. Moghazy

2020 ◽  
Vol 19 (5) ◽  
pp. 909-918
Author(s):  
Saqer Alarifi ◽  
Salam Massadeh ◽  
Mohammed Al-Agamy ◽  
Manal A.l. Aamery ◽  
Abdulkareem Al Bekairy ◽  
...  

Purpose: To incorporate ciprofloxacin (CIP) into solid lipid nanoparticles (SLN) in order to enhance its biopharmaceutical properties and antibacterial activity.Methods: A sonication melt-emulsification method was employed for the preparation of CIP-loaded SLN. The composition of the SLN was varied in order to investigate factors such as lipid type and combination ratio, drug to lipid ratio, and surfactant ratio. The produced SLN formulations wereevaluated for their particle size and shape, zeta potential, and entrapment efficiency. In addition, the effect of SLN formulation composition on its drug release profile and antimicrobial activity against Escherichia coli, Pseudomonas Aeruginosa, and Staphylococcus Aureus was also investigated.Results: The generated nanoparticles had particle size in the range of 165 to 320 nm. The zetapotential values were generally low within ± 5. All formulations exhibited entrapment efficiency between 50 and 90 %. CIP release exhibited a biphasic release profile with a low burst phase, followed by uniform controlled-release behavior of various rates. SLN-loaded CIP exhibited one-fold reduction in minimum inhibitory concentration (MIC) and caused significant inhibition of all the three bacterial strains tested, when compared with pure CIP.Conclusion: Loading of CIP into SLN significantly enhances its antimicrobial activity in vitro which can translate to significant enhancement of therapeutic outcomes by minimizing the dose-dependent adverse and side effects and/or enhancing the antimicrobial spectrum of activity. Keywords: Solid lipid nanoparticles, Sonication melt-emulsification, Ciprofloxacin, Escherichia coli, Pseudomonas aeruginosa


2011 ◽  
Vol 344 (6) ◽  
pp. 358-365 ◽  
Author(s):  
Shridhar I. Panchamukhi ◽  
Jameel Ahmed S. Mulla ◽  
Nitinkumar S. Shetty ◽  
Mohammed Iqbal A. Khazi ◽  
Ashraf Y. Khan ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Alireza Valizadeh ◽  
Ali Asghar Khaleghi ◽  
Ghazaal Roozitalab ◽  
Mahmoud Osanloo

Abstract Background The cancer burden is rising rapidly worldwide, and it annually causes about 8.8 million deaths worldwide. Due to chemical drugs’ side effects and the emergence of resistance, the development of new green drugs has received much attention. We aimed to investigate whether solid-lipid nanoparticles containing essential oil of Zataria multiflora (ZMSLN) enhanced the anticancer efficacy of the essential oil against breast cancer (MDA-MB-468) and melanoma (A-375) cells. Results ZMSLN was prepared by the high-pressure homogenizer method; particle size 176 ± 8 nm, polydispersity index 0.22 ± 0.1, entrapment efficiency 67 ± 5%. The essential oil showed a dose-dependent antiproliferative effect on MDA-MB-468 and A-375 cells at all examined concentrations (75, 150, 300, 600, and 1200 μg/mL). Interestingly, after treating both cells with 75 μg/mL of ZMSLN, their viabilities were reduced to under 13%. Conclusion The finding showed that ZMSLN had a distinct antiproliferative efficacy; it could thus be considered a green anticancer candidate for further in vivo and in vivo studies.


Author(s):  
Hamid Reza Kelidari ◽  
Mohammad Djaefar Moemenbellah-Fard ◽  
Katayon Morteza-Semnani ◽  
Fatemeh Amoozegar ◽  
Marziae Shahriari-Namadi ◽  
...  

Author(s):  
PALLAVI M CHAUDHARI ◽  
VAISHNAVI M BIND

Objective: The main objective of the study was to formulate and evaluate and perform an optimization study of lavender essential oil loaded solid lipid nanoparticles (SLNs) based gel. Materials and Methods: SLNs were prepared by the hot homogenization technique. A total of eight formulations were formulated as per 23 factorial design by design expert 11 software. The formulated SLNs were further evaluated for particle size, entrapment efficiency, drug release profile. After evaluation, the optimized batch was further used for formulating gel. The formulated gel was further subjected to ex vivo studies. Results: After the evaluation of all the parameters, batch 7 was found to be optimized. Batch 7 was found to have the lowest particle size of 30.91±0.30, higher entrapment efficiency of 89.99±0.87, and higher drug release of 90.41±0.55. It was further used for formulating gel which was found to be consistent, homogenous, smooth, and spreadable. The % inhibition of the formulated SLN based gel was found to be 28±0.1%. Conclusion: The SLNs were prepared and were formulated into the gel. The gel showed anti-inflammatory activity.


Sign in / Sign up

Export Citation Format

Share Document