scholarly journals Four times out of Europe: serial invasions of the winter moth, Operophtera brumata , to North America

2021 ◽  
Author(s):  
Jeremy C. Andersen ◽  
Nathan P. Havill ◽  
Adalgisa Caccone ◽  
Joseph S. Elkinton
Author(s):  
Jeremy Andersen ◽  
Nathan Havill ◽  
Adalgisa Caccone ◽  
Joseph Elkinton

Reconstructing the geographic origins of invasive species is critical for establishing effective management strategies. Frequently, molecular investigations are undertaken when the source population is not known, however; these analyses are constrained both by the amount of diversity present in the native region and by changes in the genetic background of the invading population following bottlenecks and/or hybridization events. Here we explore the geographical origins of the invasive winter moth (Operopthera brumata L.) that has caused widespread defoliation to forests, orchards, and crops in four discrete regions: Nova Scotia, British Columbia, Oregon, and the northeastern United States. It is not known whether these represent independent introductions to North America, or “stepping stone” spread among regions. Using a combination of Bayesian assignment and approximate Bayesian computation methods, we analyzed a population genetic dataset of 24 polymorphic microsatellite loci. We estimate that winter moth was introduced to North America on at least four occasions, with the Nova Scotian and British Columbian populations likely being introduced from France and Sweden, respectively; the Oregonian population likely being introduced from either the British Isles or northern Fennoscandia; and the population in the northeastern United States likely being introduced from somewhere in Central Europe. To our surprise, we found that hybridization has not played a large role in the establishment of winter moth populations even though previous reports have documented widespread hybridization between winter moth and a native congener. We discuss the impact of genetic bottlenecks on analyses meant to determine region of origin.


1967 ◽  
Vol 99 (8) ◽  
pp. 829-834 ◽  
Author(s):  
A. W. MacPhee

AbstractThe winter moth, Operophtera brumata (L.), a recent introduction to North America, is a serious pest of apple in Nova Scotia. Natural controls, mainly the parasite Cyzenis albicans (Fall.), reduce its rate of increase, and selective chemical controls are applied to maintain economic levels. Its maximum density is limited by its food supply in neglected orchards. The mean freezing point of O. brumata winter eggs is −31°F. Egg mortality increases appreciably with increase of duration of exposure to low temperatures in the −26°F to −34°F vulnerable range. It seems probable that winter moth will continue to spread slowly over much of Eastern North America.


2020 ◽  
Vol 49 (6) ◽  
pp. 1492-1498
Author(s):  
Brian P Griffin ◽  
Jennifer L Chandler ◽  
Jeremy C Andersen ◽  
Nathan P Havill ◽  
Joseph S Elkinton

Abstract Winter moth, Operophtera brumata L. (Lepidoptera: Geometridae), causes widespread defoliation in both its native and introduced distributions. Invasive populations of winter moth are currently established in the United States and Canada, and pheromone-baited traps have been widely used to track its spread. Unfortunately, a native species, the Bruce spanworm, O. bruceata (Hulst), and O. bruceata × brumata hybrids respond to the same pheromone, complicating efforts to detect novel winter moth populations. Previously, differences in measurements of a part of the male genitalia called the uncus have been utilized to differentiate the species; however, the accuracy of these measurements has not been quantified using independent data. To establish morphological cutoffs and estimate the accuracy of uncus-based identifications, we compared morphological measurements and molecular identifications based on microsatellite genotyping. We find that there are significant differences in some uncus measurements, and that in general, uncus measurements have low type I error rates (i.e., the probability of having false positives for the presence of winter moth). However, uncus measurements had high type II error rates (i.e., the probability of having false negatives for the presence of winter moth). Our results show that uncus measurements can be useful for performing preliminary identifications to monitor the spread of winter moth, though for accurate monitoring, molecular methods are still required. As such, efforts to study the spread of winter moth into interior portions of North America should utilize a combination of pheromone trapping and uncus measurements, while maintaining vouchers for molecular identification.


1954 ◽  
Vol 86 (10) ◽  
pp. 433-438 ◽  
Author(s):  
R. F. Morris ◽  
W. A. Reeks

The winter moth, Operophtera brumata (Linn.), was not known to occur in North America until 1949, when it was first reported from the south shore of Nova Scotia by Hawholdt and Cuming (2) and Smith (4). By that time this introduced species was well established. It is suspected that the winter moth in association with the fall cankerworm, Alsophila pometaria (Harr.), has been causing considerable defoliation of deciduous tree species in the region since the early 1930's (2). The habits and stages of the winter moth have been described briefly by Smith (S), who also has indicated the important differences between the winter moth and the fall cankerworm (4).


2016 ◽  
Vol 3 (10) ◽  
pp. 160361 ◽  
Author(s):  
Anne l-M-Arnold ◽  
Maren Grüning ◽  
Judy Simon ◽  
Annett-Barbara Reinhardt ◽  
Norbert Lamersdorf ◽  
...  

Climate change may foster pest epidemics in forests, and thereby the fluxes of elements that are indicators of ecosystem functioning. We examined compounds of carbon (C) and nitrogen (N) in insect faeces, leaf litter, throughfall and analysed the soils of deciduous oak forests ( Quercus petraea  L.) that were heavily infested by the leaf herbivores winter moth ( Operophtera brumata  L.) and mottled umber ( Erannis defoliaria  L.). In infested forests, total net canopy-to-soil fluxes of C and N deriving from insect faeces, leaf litter and throughfall were 30- and 18-fold higher compared with uninfested oak forests, with 4333 kg C ha −1 and 319 kg N ha −1 , respectively, during a pest outbreak over 3 years. In infested forests, C and N levels in soil solutions were enhanced and C/N ratios in humus layers were reduced indicating an extended canopy-to-soil element pathway compared with the non-infested forests. In a microcosm incubation experiment, soil treatments with insect faeces showed 16-fold higher fluxes of carbon dioxide and 10-fold higher fluxes of dissolved organic carbon compared with soil treatments without added insect faeces (control). Thus, the deposition of high rates of nitrogen and rapidly decomposable carbon compounds in the course of forest pest epidemics appears to stimulate soil microbial activity (i.e. heterotrophic respiration), and therefore, may represent an important mechanism by which climate change can initiate a carbon cycle feedback.


1958 ◽  
Vol 90 (9) ◽  
pp. 538-540 ◽  
Author(s):  
C. C. Smith

The fall cankerworm, Alsophila pometaria (Harr.), and the winter moth, Operophtera brumata (Linn.), both feed to a great extent on the same tree species and prefer apple, Malus spp., red oak, Quercus rubra L., basswood, Tilia spp., white elm, Ulmus americana L., and Norway maple, Acer platanoides L. They also have similar life-histories and habits (Smith 1950 and 1953). Both lay their eggs on the trees in the fall and overwinter in this stage. The eggs hatch about the same time and the larvae of (both species mature about the third week in June. They drop to the ground and form cocoons at a depth of about an inch. The adults emerge about the same time, commencing usually during the last week in October and continuing until early December or until the ground freezes.


1988 ◽  
Vol 120 (7) ◽  
pp. 697-698 ◽  
Author(s):  
Kenneth A. Pivnick

In a recently completed study involving pheromone trapping of the winter moth, Operophtera brumata (L.), and the Bruce spanworm, O. bruceata (Hulst), on Vancouver Island (Pivnick et al. 1988), I noticed that O. bruceata had wing colouration different from sympatric O. brumata. The west coast O. bruceata has a pale yellow-orange costal margin on the underside of the forewings and this is faint to absent in O. brumata (Fig. 1). It is also absent from O. bruceata in Saskatoon, which is interesting because some authors consider the west coast population of O. bruceata to be a separate species: the western winter moth, O. occidentalis (see Ferguson 1978; Pivnick et al. 1988). Descriptions of O. bruceata (Brown 1962) and O. brumata (Cuming 1961), and a taxonomic key to these two species (Eidt et al. 1966), do not mention any distinctive wing markings that could be used to separate the two species.


1960 ◽  
Vol 92 (11) ◽  
pp. 862-864 ◽  
Author(s):  
D. G. Embree

Cyzenis albicans (Fall.) has been introduced into Nova Scotia as a control measure against the winter moth, Operophtera brumata (L.). The parasite attacks the late larval stages of the winter moth, pupates within the host in the ground, and emerges in the spring. The first liberations were made at Oak Hill near Bridgewater and the dates of releases as well as the numbers released were reported by Graham (1958) as follows: 1954, 31; 1955, 1008; 1956, 1005; 1957, 250. Graham made recoveries of C. albicans from rearings of larvae collected at Oak Hill in 1956 and 1957 and found that parasitism was less than two per cent both years. While liberations have been made at other locations in the Province since 1957, no further releases have been made at or near Oak Hill.


1958 ◽  
Vol 90 (10) ◽  
pp. 595-596 ◽  
Author(s):  
A. R. Graham

Five species of parasites reared from European material were released at Oak Hill, near Bridgewater, Nova Scotia from 1954 to 1956 as biotic agents against the winter moth, Operophtera brumata (L.) which had been established in Nova Scotia since before 1950. Recovery collections were made annually from 1955 to 1957. This work is still in progress, and in 1957 releases were made in four additional localities. Results of establishment of parasites from releases from 1954 to 1956 are reported below.


Sign in / Sign up

Export Citation Format

Share Document