Genomic and phenotypic analysis of SspH1 identifies a new Salmonella effector, SspH3

2021 ◽  
Adrian Herod ◽  
Jean‐Guillaume Emond‐Rheault ◽  
Sandeep Tamber ◽  
Lawrence Goodridge ◽  
Roger C. Lévesque ◽  
1995 ◽  
Vol 73 (05) ◽  
pp. 746-749 ◽  
E Sacchi ◽  
M Pinotti ◽  
G Marchetti ◽  
G Merati ◽  
L Tagliabue ◽  

SummaryA protein S gene polymorphism, detectable by restriction analysis (BstXI) of amplified exonic sequences (exon 15), was studied in seven Italian families with protein S deficiency. In the 17 individuals heterozygous for the polymorphism the study was extended to platelet mRNA through reverse transcription, amplification and densitometric analysis. mRNA produced by the putative defective protein S genes was absent in three families and reduced to a different extent (as expressed by altered allelic ratios) in four families. The allelic ratios helped to distinguish total protein S deficiency (type I) from free protein S deficiency (type IIa) in families with equivocal phenotypes. This study indicates that the study of platelet mRNA, in association with phenotypic analysis based upon protein S assays in plasma, helps to classify patients with protein S deficiency.

2006 ◽  
Vol 26 (6) ◽  
pp. 2317-2326 ◽  
Ivan del Barco Barrantes ◽  
Ana Montero-Pedrazuela ◽  
Ana Guadaño-Ferraz ◽  
Maria-Jesus Obregon ◽  
Raquel Martinez de Mena ◽  

ABSTRACT dickkopf (dkk) genes encode a small family of secreted Wnt antagonists, except for dkk3, which is divergent and whose function is poorly understood. Here, we describe the generation and characterization of dkk3 mutant mice. dkk3-deficient mice are viable and fertile. Phenotypic analysis shows no major alterations in organ morphology, physiology, and most clinical chemistry parameters. Since Dkk3 was proposed to function as thyroid hormone binding protein, we have analyzed deiodinase activities, as well as thyroid hormone levels. Mutant mice are euthyroid, and the data do not support a relationship of dkk3 with thyroid hormone metabolism. Altered phenotypes in dkk3 mutant mice were observed in the frequency of NK cells, immunoglobulin M, hemoglobin, and hematocrit levels, as well as lung ventilation. Furthermore, dkk3-deficient mice display hyperactivity.

2006 ◽  
Vol 26 (3) ◽  
pp. 965-975 ◽  
Tom S. Kim ◽  
Cynthia Heinlein ◽  
Robert C. Hackman ◽  
Peter S. Nelson

ABSTRACT Tmprss2 encodes an androgen-regulated type II transmembrane serine protease (TTSP) expressed highly in normal prostate epithelium and has been implicated in prostate carcinogenesis. Although in vitro studies suggest protease-activated receptor 2 may be a substrate for TMPRSS2, the in vivo biological activities of TMPRSS2 remain unknown. We generated Tmprss2 −/− mice by disrupting the serine protease domain through homologous recombination. Compared to wild-type littermates, Tmprss2 −/− mice developed normally, survived to adulthood with no differences in protein levels of prostatic secretions, and exhibited no discernible abnormalities in organ histology or function. Loss of TMPRSS2 serine protease activity did not influence fertility, reduce survival, result in prostate hyperplasia or carcinoma, or alter prostatic luminal epithelial cell regrowth following castration and androgen replacement. Lack of an observable phenotype in Tmprss2 −/− mice was not due to transcriptional compensation by closely related Tmprss2 homologs. We conclude that the lack of a discernible phenotype in Tmprss2 −/− mice suggests functional redundancy involving one or more of the type II transmembrane serine protease family members or other serine proteases. Alternatively, TMPRSS2 may contribute a specialized but nonvital function that is apparent only in the context of stress, disease, or other systemic perturbation.

Genetics ◽  
2000 ◽  
Vol 155 (4) ◽  
pp. 1535-1542 ◽  
Mark Lee ◽  
Sukalyan Chatterjee ◽  
Kevin Struhl

Abstract The Cyc8-Tup1 corepressor complex is targeted to promoters by pathway-specific DNA-binding repressors, thereby inhibiting the transcription of specific classes of genes. Genetic screens have identified mutations in a variety of Pol II holoenzyme components (Srb8, Srb9, Srb10, Srb11, Sin4, Rgr1, Rox3, and Hrs1) and in the N-terminal tails of histones H3 and H4 that weaken repression by Cyc8-Tup1. Here, we analyze the effect of individual and multiple mutations in many of these components on transcriptional repression of natural promoters that are regulated by Cyc8-Tup1. In all cases tested, individual mutations have a very modest effect on SUC2 RNA levels and no detectable effect on levels of ANB1, MFA2, and RNR2. Furthermore, multiple mutations within the Srb components, between Srbs and Sin4, and between Srbs and histone tails affect Cyc8-Tup1 repression to the same modest extent as the individual mutations. These results argue that the weak effects of the various mutations on repression by Cyc8-Tup1 are not due to redundancy among components of the Pol II machinery, and they argue against a simple redundancy between the holoenzyme and chromatin pathways. In addition, phenotypic analysis indicates that, although Srbs8–11 are indistinguishable with respect to Cyc8-Tup1 repression, the individual Srbs are functionally distinct in other respects. Genetic interactions among srb mutations imply that a balance between the activities of Srb8 + Srb10 and Srb11 is important for normal cell growth.

2021 ◽  
Vol 4 (1) ◽  
Anastasiya Börsch ◽  
Daniel J. Ham ◽  
Nitish Mittal ◽  
Lionel A. Tintignac ◽  
Eugenia Migliavacca ◽  

AbstractSarcopenia, the age-related loss of skeletal muscle mass and function, affects 5–13% of individuals aged over 60 years. While rodents are widely-used model organisms, which aspects of sarcopenia are recapitulated in different animal models is unknown. Here we generated a time series of phenotypic measurements and RNA sequencing data in mouse gastrocnemius muscle and analyzed them alongside analogous data from rats and humans. We found that rodents recapitulate mitochondrial changes observed in human sarcopenia, while inflammatory responses are conserved at pathway but not gene level. Perturbations in the extracellular matrix are shared by rats, while mice recapitulate changes in RNA processing and autophagy. We inferred transcription regulators of early and late transcriptome changes, which could be targeted therapeutically. Our study demonstrates that phenotypic measurements, such as muscle mass, are better indicators of muscle health than chronological age and should be considered when analyzing aging-related molecular data.

Sign in / Sign up

Export Citation Format

Share Document