scholarly journals Combined GWAS and eQTL analysis uncovers a genetic regulatory network orchestrating the initiation of secondary cell wall development in cotton

2020 ◽  
Vol 226 (6) ◽  
pp. 1738-1752 ◽  
Author(s):  
Zhonghua Li ◽  
Pengcheng Wang ◽  
Chunyuan You ◽  
Jiwen Yu ◽  
Xiangnan Zhang ◽  
...  
2002 ◽  
Vol 80 (10) ◽  
pp. 1029-1033 ◽  
Author(s):  
W Gindl ◽  
H S Gupta ◽  
C Grünwald

The lignin content and the mechanical properties of lignifying and fully lignified spruce tracheid secondary cell walls were determined using UV microscopy and nano-indentation, respectively. The average lignin content of developing tracheids was 0.10 g·g–1, as compared with 0.21 g·g–1 in mature tracheids. The modulus of elasticity of developing cells was on average 22% lower than the one measured in mature, fully lignified cells. For the longitudinal hardness, a larger difference of 26% was observed. As lignifying cells in the cambial zone are undergoing cell wall development, spaces in the cellulose–hemicellulose structure are filled with lignin and the density of the cell wall is believed to increase. It is therefore suggested that the observed difference in modulus of elasticity between developing and fully lignified cell walls is due to the filling of spaces with lignin and an increase of the packing density of the cell wall during lignification. Although remarkably less stiff than the composite polysaccharide structure in the secondary cell wall, lignin may be considered equally hard. Therefore, the observed increase in lignin content may contribute directly to the measured increase of hardness.Key words: secondary cell wall, hardness, lignin, modulus of elasticity, wood formation.


2005 ◽  
Vol 15 (3) ◽  
pp. 205-217 ◽  
Author(s):  
Todd N. Bezold ◽  
Dennis Mathews ◽  
J. Brent Loy ◽  
Subhash C. Minocha

We undertook a comparative study of molecular changes during development of seed coats in the wild-type and a recessive hull-less mutant of pumpkin (Cucurbita pepo L.), with the goal of identifying key genes involved in secondary cell wall development in the testa. The mature mutant testa has reduced amounts of cellulose and lignin as compared to the wild type. The expression patterns of several genes involved in secondary cell wall biosynthesis during the development of the testa are described. These genes are: CELLULOSE SYNTHASE, PHENYLALANINE AMMONIA-LYASE, 4-COUMARATE-CoA LIGASE, and CINNAMOYL-CoA REDUCTASE. Additionally, the expression patterns of a few genes that were differentially expressed in the two genotypes during testa development (GLUTATHIONE REDUCTASE, ABSCISIC ACID RESPONSE PROTEIN E, a SERINE-THREONINE KINASE, and a β-UREIDOPROPIONASE) are presented. The results show a coordinated expression of several genes involved in cellulose and lignin biosynthesis, as well as marked differences in the level of their expression between the two genotypes during testa development. There is generally a higher expression of genes involved in cellulose and lignin biosynthesis in the wild-type testa as compared to the mutant. The molecular data presented here are consistent with anatomical and biochemical differences between the wild-type and the mutant testae. An understanding of the genes involved in cell wall development in the testa will facilitate the manipulation of seed coat development in Cucurbita and other species for diverse commercial applications.


BMC Genomics ◽  
2016 ◽  
Vol 17 (1) ◽  
Author(s):  
Huanzhong Wang ◽  
Jung Hyun Yang ◽  
Fang Chen ◽  
Ivone Torres-Jerez ◽  
Yuhong Tang ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hebi Zhuang ◽  
Sun-Li Chong ◽  
Borah Priyanka ◽  
Xiao Han ◽  
Erpei Lin ◽  
...  

Abstract Background R2R3-MYB is a class of transcription factor crucial in regulating secondary cell wall development during wood formation. The regulation of wood formation in gymnosperm has been understudied due to its large genome size. Using Single-Molecule Real-Time sequencing, we obtained full-length transcriptomic libraries from the developmental stem of Cunninghamia lanceolata, a perennial conifer known as Chinese fir. The R2R3-MYB of C. lanceolata (hereafter named as ClMYB) associated with secondary wall development were identified based on phylogenetic analysis, expression studies and functional study on transgenic line. Results The evolutionary relationship of 52 ClMYBs with those from Arabidopsis thaliana, Eucalyptus grandis, Populus trichocarpa, Oryza sativa, two gymnosperm species, Pinus taeda, and Picea glauca were established by neighbour-joining phylogenetic analysis. A large number of ClMYBs resided in the woody-expanded subgroups that predominated with the members from woody dicots. In contrast, the woody-preferential subgroup strictly carrying the members of woody dicots contained only one candidate. The results suggest that the woody-expanded subgroup emerges before the gymnosperm/angiosperm split, while most of the woody-preferential subgroups are likely lineage-specific to woody dicots. Nine candidates shared the same subgroups with the A. thaliana orthologs, with known function in regulating secondary wall development. Gene expression analysis inferred that ClMYB1/2/3/4/5/26/27/49/51 might participate in secondary wall development, among which ClMYB1/2/5/26/27/49 were significantly upregulated in the highly lignified compression wood region, reinforcing their regulatory role associated with secondary wall development. ClMYB1 was experimentally proven a transcriptional activator that localised in the nucleus. The overexpression of ClMYB1 in Nicotiana benthamiana resulted in an increased lignin deposition in the stems. The members of subgroup S4, ClMYB3/4/5 shared the ERF-associated amphiphilic repression motif with AtMYB4, which is known to repress the metabolism of phenylpropanoid derived compounds. They also carried a core motif specific to gymnosperm lineage, suggesting divergence of the regulatory process compared to the angiosperms. Conclusions This work will enrich the collection of full-length gymnosperm-specific R2R3-MYBs related to stem development and contribute to understanding their evolutionary relationship with angiosperm species.


Fibers ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 78 ◽  
Author(s):  
Luis Cabrales ◽  
Noureddine Abidi

During cotton fibers development, important structural changes occur, which lead to cellulose deposition and organization in the secondary cell wall. Several studies have focused on the analysis of the cell wall extracts of cotton fibers to gain an understanding of the changes in carbohydrate profiles and to determine the changes in crystallinity, cellulosic and non-cellulosic compounds at various stages of the fiber cell wall development. In this research, thermogravimetric analysis (TGA) was used to study intact fibers harvested from two cotton genotypes. Cellulose macromolecules structural changes occurring during different developmental stages were studied. The results from TGA technique were in agreement with results from other analytical techniques, which indicates that TGA could be a great tool to investigate the onset of cellulose deposition and to evaluate the cell wall composition during fiber development. The results obtained in this study demonstrated that the initiation of the secondary cell wall is genotype-dependent.


Sign in / Sign up

Export Citation Format

Share Document