Molecular analysis of the hull-less seed trait in pumpkin: expression profiles of genes related to seed coat development11

2005 ◽  
Vol 15 (3) ◽  
pp. 205-217 ◽  
Author(s):  
Todd N. Bezold ◽  
Dennis Mathews ◽  
J. Brent Loy ◽  
Subhash C. Minocha

We undertook a comparative study of molecular changes during development of seed coats in the wild-type and a recessive hull-less mutant of pumpkin (Cucurbita pepo L.), with the goal of identifying key genes involved in secondary cell wall development in the testa. The mature mutant testa has reduced amounts of cellulose and lignin as compared to the wild type. The expression patterns of several genes involved in secondary cell wall biosynthesis during the development of the testa are described. These genes are: CELLULOSE SYNTHASE, PHENYLALANINE AMMONIA-LYASE, 4-COUMARATE-CoA LIGASE, and CINNAMOYL-CoA REDUCTASE. Additionally, the expression patterns of a few genes that were differentially expressed in the two genotypes during testa development (GLUTATHIONE REDUCTASE, ABSCISIC ACID RESPONSE PROTEIN E, a SERINE-THREONINE KINASE, and a β-UREIDOPROPIONASE) are presented. The results show a coordinated expression of several genes involved in cellulose and lignin biosynthesis, as well as marked differences in the level of their expression between the two genotypes during testa development. There is generally a higher expression of genes involved in cellulose and lignin biosynthesis in the wild-type testa as compared to the mutant. The molecular data presented here are consistent with anatomical and biochemical differences between the wild-type and the mutant testae. An understanding of the genes involved in cell wall development in the testa will facilitate the manipulation of seed coat development in Cucurbita and other species for diverse commercial applications.

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yongil Yang ◽  
Chang Geun Yoo ◽  
William Rottmann ◽  
Kimberly A. Winkeler ◽  
Cassandra M. Collins ◽  
...  

Abstract Background Plant secondary cell wall is a renewable feedstock for biofuels and biomaterials production. Arabidopsis VASCULAR-RELATED NAC DOMAIN (VND) has been demonstrated to be a key transcription factor regulating secondary cell wall biosynthesis. However, less is known about its role in the woody species. Results Here we report the functional characterization of Populus deltoides WOOD-ASSOCIATED NAC DOMAIN protein 3 (PdWND3A), a sequence homolog of Arabidopsis VND4 and VND5 that are members of transcription factor networks regulating secondary cell wall biosynthesis. PdWND3A was expressed at higher level in the xylem than in other tissues. The stem tissues of transgenic P. deltoides overexpressing PdWND3A (OXPdWND3A) contained more vessel cells than that of wild-type plants. Furthermore, lignin content and lignin monomer syringyl and guaiacyl (S/G) ratio were higher in OXPdWND3A transgenic plants than in wild-type plants. Consistent with these observations, the expression of FERULATE 5-HYDROXYLASE1 (F5H1), encoding an enzyme involved in the biosynthesis of sinapyl alcohol (S unit monolignol), was elevated in OXPdWND3A transgenic plants. Saccharification analysis indicated that the rate of sugar release was reduced in the transgenic plants. In addition, OXPdWND3A transgenic plants produced lower amounts of biomass than wild-type plants. Conclusions PdWND3A affects lignin biosynthesis and composition and negatively impacts sugar release and biomass production.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ying Yu ◽  
Huizi Liu ◽  
Nan Zhang ◽  
Caiqiu Gao ◽  
Liwang Qi ◽  
...  

The MYB (v-myb avian myeloblastosis viral oncogene homolog) family is one of the largest transcription factor families in plants, and is widely involved in the regulation of plant metabolism. In this study, we show that a MYB4 transcription factor, BpMYB4, identified from birch (Betula platyphylla Suk.) and homologous to EgMYB1 from Eucalyptus robusta Smith and ZmMYB31 from Zea mays L. is involved in secondary cell wall synthesis. The expression level of BpMYB4 was higher in flowers relative to other tissues, and was induced by artificial bending and gravitational stimuli in developing xylem tissues. The expression of this gene was not enriched in the developing xylem during the active season, and showed higher transcript levels in xylem tissues around sprouting and near the dormant period. BpMYB4 also was induced express by abiotic stress. Functional analysis indicated that expression of BpMYB4 in transgenic Arabidopsis (Arabidopsis thaliana) plants could promote the growth of stems, and result in increased number of inflorescence stems and shoots. Anatomical observation of stem sections showed lower lignin deposition, and a chemical contents test also demonstrated increased cellulose and decreased lignin content in the transgenic plants. In addition, treatment with 100 mM NaCl and 200 mM mannitol resulted in the germination rate of the over-expressed lines being higher than that of the wild-type seeds. The proline content in transgenic plants was higher than that in WT, but MDA content was lower than that in WT. Further investigation in birch using transient transformation techniques indicated that overexpression of BpMYB4 could scavenge hydrogen peroxide and O2.– and reduce cell damage, compared with the wild-type plants. Therefore, we believe that BpMYB4 promotes stem development and cellulose biosynthesis as an inhibitor of lignin biosynthesis, and has a function in abiotic stress resistance.


2021 ◽  
Vol 22 (7) ◽  
pp. 3560
Author(s):  
Ruixue Xiao ◽  
Chong Zhang ◽  
Xiaorui Guo ◽  
Hui Li ◽  
Hai Lu

The secondary wall is the main part of wood and is composed of cellulose, xylan, lignin, and small amounts of structural proteins and enzymes. Lignin molecules can interact directly or indirectly with cellulose, xylan and other polysaccharide molecules in the cell wall, increasing the mechanical strength and hydrophobicity of plant cells and tissues and facilitating the long-distance transportation of water in plants. MYBs (v-myb avian myeloblastosis viral oncogene homolog) belong to one of the largest superfamilies of transcription factors, the members of which regulate secondary cell-wall formation by promoting/inhibiting the biosynthesis of lignin, cellulose, and xylan. Among them, MYB46 and MYB83, which comprise the second layer of the main switch of secondary cell-wall biosynthesis, coordinate upstream and downstream secondary wall synthesis-related transcription factors. In addition, MYB transcription factors other than MYB46/83, as well as noncoding RNAs, hormones, and other factors, interact with one another to regulate the biosynthesis of the secondary wall. Here, we discuss the biosynthesis of secondary wall, classification and functions of MYB transcription factors and their regulation of lignin polymerization and secondary cell-wall formation during wood formation.


2009 ◽  
Vol 8 (10) ◽  
pp. 1475-1485 ◽  
Author(s):  
Thanyanuch Kriangkripipat ◽  
Michelle Momany

ABSTRACT Protein O-mannosyltransferases (Pmts) initiate O-mannosyl glycan biosynthesis from Ser and Thr residues of target proteins. Fungal Pmts are divided into three subfamilies, Pmt1, -2, and -4. Aspergillus nidulans possesses a single representative of each Pmt subfamily, pmtA (subfamily 2), pmtB (subfamily 1), and pmtC (subfamily 4). In this work, we show that single Δpmt mutants are viable and have unique phenotypes and that the ΔpmtA ΔpmtB double mutant is the only viable double mutant. This makes A. nidulans the first fungus in which all members of individual Pmt subfamilies can be deleted without loss of viability. At elevated temperatures, all A. nidulans Δpmt mutants show cell wall-associated defects and increased sensitivity to cell wall-perturbing agents. The Δpmt mutants also show defects in developmental patterning. Germ tube emergence is early in ΔpmtA and more frequent in ΔpmtC mutants than in the wild type. In ΔpmtB mutants, intrahyphal hyphae develop. All Δpmt mutants show distinct conidiophore defects. The ΔpmtA strain has swollen vesicles and conidiogenous cells, the ΔpmtB strain has swollen conidiophore stalks, and the ΔpmtC strain has dramatically elongated conidiophore stalks. We also show that AN5660, an ortholog of Saccharomyces cerevisiae Wsc1p, is modified by PmtA and PmtC. The Δpmt phenotypes at elevated temperatures, increased sensitivity to cell wall-perturbing agents and restoration to wild-type growth with osmoticum suggest that A. nidulans Pmts modify proteins in the cell wall integrity pathway. The altered developmental patterns in Δpmt mutants suggest that A. nidulans Pmts modify proteins that serve as spatial cues.


1972 ◽  
Vol 18 (6) ◽  
pp. 909-915 ◽  
Author(s):  
A. P. Singh ◽  
K.-J. Cheng ◽  
J. W. Costerton ◽  
E. S. Idziak ◽  
J. M. Ingram

The site of the cell barrier to actinomycin-D uptake was studied using a wild-type Escherichia coli strain P and its cell envelope-defective filamentous mutants, strains 6γ and 12γ, both of which 'leak' β-galactosidase and alkaline phosphatase into the medium during growth indicating both membrane and cell-wall defects. Actinomycin-D entered the cells of these two mutant strains as evidenced by the inhibition of both 14C-uracil incorporation and synthesis of the induced β-galactosidase system. Under similar conditions, no inhibition occurred in the wild-type strain and its sucrose-lysozyme prepared spheroplasts. Actinomycin-D did, however, inhibit the above-mentioned systems in the wild-type sucrose-lysozyme spheroplasts prepared in the presence of 2 mM EDTA. The experimental data indicate that although the cell wall may act as a primary barrier or sieve to actinomycin-D, the cytoplasmic membrane should be considered the final and determinative barrier to this antibiotic.


2019 ◽  
Author(s):  
Philippe Golfier ◽  
Faride Unda ◽  
Emily K. Murphy ◽  
Jianbo Xie ◽  
Feng He ◽  
...  

AbstractCell wall recalcitrance is a major constraint for the exploitation of lignocellulosic biomass as renewable resource for energy and bio-based products. Transcriptional regulators of the lignin biosynthetic pathway represent promising targets for tailoring lignin content and composition in plant secondary cell walls. A wealth of research in model organisms has revealed that transcriptional regulation of secondary cell wall formation is orchestrated by a hierarchical transcription factor (TF) network with NAC TFs as master regulators and MYB factors in the lower tier regulators. However, knowledge about the transcriptional regulation of lignin biosynthesis in lignocellulosic feedstocks, such as Miscanthus, is limited. Here, we characterized two Miscanthus MYB TFs, MsSCM1 and MsMYB103, and compared their transcriptional impact with that of the master regulator MsSND1. In Miscanthus leaves MsSCM1 and MsMYB103 are expressed at growth stages associated with lignification. Ectopic expression of MsSCM1 and MsMYB103 in tobacco leaves was sufficient to trigger secondary cell wall deposition with distinct sugar and lignin composition. Moreover, RNA-seq analysis revealed that the transcriptional responses to MsSCM1 and MsMYB103 overexpression showed extensive overlap with the response to MsSND1, but were distinct from each other, underscoring the inherent complexity of secondary cell wall formation. Together, MsSCM1 and MsMYB103 represent interesting targets for manipulations of lignin content and composition in Miscanthus towards tailored biomass.


Development ◽  
2002 ◽  
Vol 129 (6) ◽  
pp. 1327-1338 ◽  
Author(s):  
Masanori Takahashi ◽  
Noriko Osumi

Recent studies have shown that generation of different kinds of neurones is controlled by combinatorial actions of homeodomain (HD) proteins expressed in the neuronal progenitors. Pax6 is a HD protein that has previously been shown to be involved in the differentiation of the hindbrain somatic (SM) motoneurones and V1 interneurones in the hindbrain and/or spinal cord. To investigate in greater depth the role of Pax6 in generation of the ventral neurones, we first examined the expression patterns of HD protein genes and subtype-specific neuronal markers in the hindbrain of the Pax6 homozygous mutant rat. We found that Islet2 (SM neurone marker) and En1 (V1 interneurone marker) were transiently expressed in a small number of cells, indicating that Pax6 is not directly required for specification of these neurones. We also observed that domains of all other HD protein genes (Nkx2.2, Nkx6.1, Irx3, Dbx2 and Dbx1) were shifted and their boundaries became blurred. Thus, Pax6 is required for establishment of the progenitor domains of the ventral neurones. Next, we performed Pax6 overexpression experiments by electroporating rat embryos in whole embryo culture. Pax6 overexpression in the wild type decreased expression of Nkx2.2, but ectopically increased expression of Irx3, Dbx1 and Dbx2. Moreover, electroporation of Pax6 into the Pax6 mutant hindbrain rescued the development of Islet2-positive and En1-positive neurones. To know reasons for perturbed progenitor domain formation in Pax6 mutant, we examined expression patterns of Shh signalling molecules and states of cell death and cell proliferation. Shh was similarly expressed in the floor plate of the mutant hindbrain, while the expressions of Ptc1, Gli1 and Gli2 were altered only in the progenitor domains for the motoneurones. The position and number of TUNEL-positive cells were unchanged in the Pax6 mutant. Although the proportion of cells that were BrdU-positive slightly increased in the mutant, there was no relationship with specific progenitor domains. Taken together, we conclude that Pax6 regulates specification of the ventral neurone subtypes by establishing the correct progenitor domains.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Qiang Ma ◽  
Nuohan Wang ◽  
Pengbo Hao ◽  
Huiru Sun ◽  
Congcong Wang ◽  
...  

Abstract Background Cotton fiber length and strength are both key traits of fiber quality, and fiber strength (FS) is tightly correlated with secondary cell wall (SCW) biosynthesis. The three-amino-acid-loop-extension (TALE) superclass homeoproteins are involved in regulating diverse biological processes in plants, and some TALE members has been identified to play a key role in regulating SCW formation. However, little is known about the functions of TALE members in cotton (Gossypium spp.). Results In the present study, based on gene homology, 46, 47, 88 and 94 TALE superfamily genes were identified in G. arboreum, G. raimondii, G. barbadense and G. hirsutum, respectively. Phylogenetic and evolutionary analysis showed the evolutionary conservation of two cotton TALE families (including BEL1-like and KNOX families). Gene structure analysis also indicated the conservation of GhTALE members under selection. The analysis of promoter cis-elements and expression patterns suggested potential transcriptional regulation functions in fiber SCW biosynthesis and responses to some phytohormones for GhTALE proteins. Genome-wide analysis of colocalization of TALE transcription factors with SCW-related QTLs revealed that some BEL1-like genes and KNAT7 homologs may participate in the regulation of cotton fiber strength formation. Overexpression of GhKNAT7-A03 and GhBLH6-A13 significantly inhibited the synthesis of lignocellulose in interfascicular fibers of Arabidopsis. Yeast two-hybrid (Y2H) experiments showed extensive heteromeric interactions between GhKNAT7 homologs and some GhBEL1-like proteins. Yeast one-hybrid (Y1H) experiments identified the upstream GhMYB46 binding sites in the promoter region of GhTALE members and defined the downstream genes that can be directly bound and regulated by GhTALE heterodimers. Conclusion We comprehensively identified TALE superfamily genes in cotton. Some GhTALE members are predominantly expressed during the cotton fiber SCW thicking stage, and may genetically correlated with the formation of FS. Class II KNOX member GhKNAT7 can interact with some GhBEL1-like members to form the heterodimers to regulate the downstream targets, and this regulatory relationship is partially conserved with Arabidopsis. In summary, this study provides important clues for further elucidating the functions of TALE genes in regulating cotton growth and development, especially in the fiber SCW biosynthesis network, and it also contributes genetic resources to the improvement of cotton fiber quality.


Sign in / Sign up

Export Citation Format

Share Document