scholarly journals High-resolution temperature responses of leaf respiration in snow gum (Eucalyptus pauciflora) reveal high-temperature limits to respiratory function

2013 ◽  
Vol 36 (7) ◽  
pp. 1268-1284 ◽  
Author(s):  
ODHRAN S. O'SULLIVAN ◽  
K. W. LASANTHA K. WEERASINGHE ◽  
JOHN R. EVANS ◽  
JOHN J. G. EGERTON ◽  
MARK G. TJOELKER ◽  
...  
Author(s):  
Colin F. Wilson ◽  
Thomas Widemann ◽  
Richard Ghail

AbstractIn this paper, originally submitted in answer to ESA’s “Voyage 2050” call to shape the agency’s space science missions in the 2035–2050 timeframe, we emphasize the importance of a Venus exploration programme for the wider goal of understanding the diversity and evolution of habitable planets. Comparing the interior, surface, and atmosphere evolution of Earth, Mars, and Venus is essential to understanding what processes determined habitability of our own planet and Earth-like planets everywhere. This is particularly true in an era where we expect thousands, and then millions, of terrestrial exoplanets to be discovered. Earth and Mars have already dedicated exploration programmes, but our understanding of Venus, particularly of its geology and its history, lags behind. Multiple exploration vehicles will be needed to characterize Venus’ richly varied interior, surface, atmosphere and magnetosphere environments. Between now and 2050 we recommend that ESA launch at least two M-class missions to Venus (in order of priority): a geophysics-focussed orbiter (the currently proposed M5 EnVision orbiter – [1] – or equivalent); and an in situ atmospheric mission (such as the M3 EVE balloon mission – [2]). An in situ and orbital mission could be combined in a single L-class mission, as was argued in responses to the call for L2/L3 themes [3–5]. After these two missions, further priorities include a surface lander demonstrating the high-temperature technologies needed for extended surface missions; and/or a further orbiter with follow-up high-resolution surface radar imaging, and atmospheric and/or ionospheric investigations.


1989 ◽  
Vol 160 ◽  
Author(s):  
Y.H. Lee ◽  
R.P. Burns ◽  
J.B. Posthill ◽  
K.J. Bachmann

AbstractThe growth of Mo overtayers and Mo-Ni multilayers on single crystal Ni(001) substrates is described. The nucleation and growth processes of these thin films were analyzed by LEED, XPS, AES and SEM and High Resolution AES investigations without breaking vacuum. Growth of Mo-Ni multilayer heterostructures on Ni(001) with ≈20Å periodicity is possible at low temperature (≈200 °C). At high temperature (≈550 °C) the growth proceeds by the Volmer-Weber mechanism preventing the deposition of small period multilayers. Annealing experiments on ultra-thin (<20Å) Mo overiayers deposited at 200 °C show an onset of interdiffusion at ≈ 550°C coupled to the generation of a new surface periodicity.


Nature ◽  
1985 ◽  
Vol 314 (6008) ◽  
pp. 250-252 ◽  
Author(s):  
J. F. Stebbins ◽  
J. B. Murdoch ◽  
E. Schneider ◽  
I. S. E. Carmichael ◽  
A. Pines

2019 ◽  
Vol 70 (19) ◽  
pp. 5051-5069 ◽  
Author(s):  
Bradley C Posch ◽  
Buddhima C Kariyawasam ◽  
Helen Bramley ◽  
Onoriode Coast ◽  
Richard A Richards ◽  
...  

The high temperature responses of photosynthesis and respiration in wheat are an underexamined, yet potential avenue to improving heat tolerance and avoiding yield losses in a warming climate.


Sign in / Sign up

Export Citation Format

Share Document