Primary pulmonary choriocarcinoma with a genomic sequence

2021 ◽  
Author(s):  
Iichiroh Onishi ◽  
Susumu Kirimura ◽  
Ryo Wakejima ◽  
Kenichi Okubo ◽  
Tamami Odai ◽  
...  
Keyword(s):  
2020 ◽  
Vol 27 ◽  
Author(s):  
Giulia De Riso ◽  
Sergio Cocozza

: Epigenetics is a field of biological sciences focused on the study of reversible, heritable changes in gene function not due to modifications of the genomic sequence. These changes are the result of a complex cross-talk between several molecular mechanisms, that is in turn orchestrated by genetic and environmental factors. The epigenetic profile captures the unique regulatory landscape and the exposure to environmental stimuli of an individual. It thus constitutes a valuable reservoir of information for personalized medicine, which is aimed at customizing health-care interventions based on the unique characteristics of each individual. Nowadays, the complex milieu of epigenomic marks can be studied at the genome-wide level thanks to massive, highthroughput technologies. This new experimental approach is opening up new and interesting knowledge perspectives. However, the analysis of these complex omic data requires to face important analytic issues. Artificial Intelligence, and in particular Machine Learning, are emerging as powerful resources to decipher epigenomic data. In this review, we will first describe the most used ML approaches in epigenomics. We then will recapitulate some of the recent applications of ML to epigenomic analysis. Finally, we will provide some examples of how the ML approach to epigenetic data can be useful for personalized medicine.


2020 ◽  
Vol 15 ◽  
Author(s):  
Affan Alim ◽  
Abdul Rafay ◽  
Imran Naseem

Background: Proteins contribute significantly in every task of cellular life. Their functions encompass the building and repairing of tissues in human bodies and other organisms. Hence they are the building blocks of bones, muscles, cartilage, skin, and blood. Similarly, antifreeze proteins are of prime significance for organisms that live in very cold areas. With the help of these proteins, the cold water organisms can survive below zero temperature and resist the water crystallization process which may cause the rupture in the internal cells and tissues. AFP’s have attracted attention and interest in food industries and cryopreservation. Objective: With the increase in the availability of genomic sequence data of protein, an automated and sophisticated tool for AFP recognition and identification is in dire need. The sequence and structures of AFP are highly distinct, therefore, most of the proposed methods fail to show promising results on different structures. A consolidated method is proposed to produce the competitive performance on highly distinct AFP structure. Methods: In this study, we propose to use machine learning-based algorithms Principal Component Analysis (PCA) followed by Gradient Boosting (GB) for antifreeze protein identification. To analyze the performance and validation of the proposed model, various combinations of two segments composition of amino acid and dipeptide are used. PCA, in particular, is proposed to dimension reduction and high variance retaining of data which is followed by an ensemble method named gradient boosting for modelling and classification. Results: The proposed method obtained the superfluous performance on PDB, Pfam and Uniprot dataset as compared with the RAFP-Pred method. In experiment-3, by utilizing only 150 PCA components a high accuracy of 89.63 was achieved which is superior to the 87.41 utilizing 300 significant features reported for the RAFP-Pred method. Experiment-2 is conducted using two different dataset such that non-AFP from the PISCES server and AFPs from Protein data bank. In this experiment-2, our proposed method attained high sensitivity of 79.16 which is 12.50 better than state-of-the-art the RAFP-pred method. Conclusion: AFPs have a common function with distinct structure. Therefore, the development of a single model for different sequences often fails to AFPs. A robust results have been shown by our proposed model on the diversity of training and testing dataset. The results of the proposed model outperformed compared to the previous AFPs prediction method such as RAFP-Pred. Our model consists of PCA for dimension reduction followed by gradient boosting for classification. Due to simplicity, scalability properties and high performance result our model can be easily extended for analyzing the proteomic and genomic dataset.


2018 ◽  
Vol 14 (1) ◽  
pp. 4-10
Author(s):  
Fang Jing ◽  
Shao-Wu Zhang ◽  
Shihua Zhang

Background:Biological network alignment has been widely studied in the context of protein-protein interaction (PPI) networks, metabolic networks and others in bioinformatics. The topological structure of networks and genomic sequence are generally used by existing methods for achieving this task.Objective and Method:Here we briefly survey the methods generally used for this task and introduce a variant with incorporation of functional annotations based on similarity in Gene Ontology (GO). Making full use of GO information is beneficial to provide insights into precise biological network alignment.Results and Conclusion:We analyze the effect of incorporation of GO information to network alignment. Finally, we make a brief summary and discuss future directions about this topic.


Genetics ◽  
2002 ◽  
Vol 161 (3) ◽  
pp. 1269-1278 ◽  
Author(s):  
Bernhard Haubold ◽  
Jürgen Kroymann ◽  
Andreas Ratzka ◽  
Thomas Mitchell-Olds ◽  
Thomas Wiehe

Abstract Arabidopsis thaliana is a highly selfing plant that nevertheless appears to undergo substantial recombination. To reconcile its selfing habit with the observations of recombination, we have sampled the genetic diversity of A. thaliana at 14 loci of ~500 bp each, spread across 170 kb of genomic sequence centered on a QTL for resistance to herbivory. A total of 170 of the 6321 nucleotides surveyed were polymorphic, with 169 being biallelic. The mean silent genetic diversity (πs) varied between 0.001 and 0.03. Pairwise linkage disequilibria between the polymorphisms were negatively correlated with distance, although this effect vanished when only pairs of polymorphisms with four haplotypes were included in the analysis. The absence of a consistent negative correlation between distance and linkage disequilibrium indicated that gene conversion might have played an important role in distributing genetic diversity throughout the region. We tested this by coalescent simulations and estimate that up to 90% of recombination is due to gene conversion.


Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 427
Author(s):  
Yoshiko Okamura ◽  
Hirokazu Takahashi ◽  
Atsuyuki Shiida ◽  
Yuto Hirata ◽  
Haruko Takeyama ◽  
...  

Marine sponge-associated bacteria are known as bio-active compound produce. We have constructed metagenome libraries of the bacteria and developed a metagenomic screening approach. Activity-based screening successfully identified novel genes and novel enzymes; however, the efficiency was only in 1 out of 104 clones. Therefore, in this study, we thought that bioinformatics could help to reduce screening efforts, and combined activity-based screening with database search. Neutrophils play an important role for the immune system to recognize excreted bacterial by-products as chemotactic factors and are recruited to infection sites to kill pathogens via phagocytosis. These excreted by-products are considered critical triggers that engage the immune system to mount a defense against infection, and identifying these factors may guide developments in medicine and diagnostics. We focused on genes encoding amino acid ligase and peptide synthetase and selected from an in-house sponge metagenome database. Cell-free culture medium of each was used in a neutrophil chemiluminescence assay in luminol reaction. The clone showing maximum activity had a genomic sequence expected to produce a molecule like a phospho-N-acetylmuramyl pentapeptide by the metagenome fragment analysis.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1286
Author(s):  
Liudmila N. Yashina ◽  
Sergey A. Abramov ◽  
Alexander V. Zhigalin ◽  
Natalia A. Smetannikova ◽  
Tamara A. Dupal ◽  
...  

The discovery of genetically distinct hantaviruses (family Hantaviridae) in multiple species of shrews, moles and bats has revealed a complex evolutionary history involving cross-species transmission. Seewis virus (SWSV) is widely distributed throughout the geographic ranges of its soricid hosts, including the Eurasian common shrew (Sorex araneus), tundra shrew (Sorex tundrensis) and Siberian large-toothed shrew (Sorex daphaenodon), suggesting host sharing. In addition, genetic variants of SWSV, previously named Artybash virus (ARTV) and Amga virus, have been detected in the Laxmann’s shrew (Sorex caecutiens). Here, we describe the geographic distribution and phylogeny of SWSV and Altai virus (ALTV) in Asian Russia. The complete genomic sequence analysis showed that ALTV, also harbored by the Eurasian common shrew, is a new hantavirus species, distantly related to SWSV. Moreover, Lena River virus (LENV) appears to be a distinct hantavirus species, harbored by Laxmann’s shrews and flat-skulled shrews (Sorex roboratus) in Eastern Siberia and far-eastern Russia. Another ALTV-related virus, which is more closely related to Camp Ripley virus from the United States, has been identified in the Eurasian least shrew (Sorex minutissimus) from far-eastern Russia. Two highly divergent viruses, ALTV and SWSV co-circulate among common shrews in Western Siberia, while LENV and the ARTV variant of SWSV co-circulate among Laxmann’s shrews in Eastern Siberia and far-eastern Russia. ALTV and ALTV-related viruses appear to belong to the Mobatvirus genus, while SWSV is a member of the Orthohantavirus genus. These findings suggest that ALTV and ALTV-related hantaviruses might have emerged from ancient cross-species transmission with subsequent diversification within Sorex shrews in Eurasia.


2021 ◽  
Vol 42 (5) ◽  
pp. 626-638
Author(s):  
Babi R. R. Nallamilli ◽  
Alka Chaubey ◽  
C. A. Valencia ◽  
Leah Stansberry ◽  
Andrea M. Behlmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document