Lipid microsphere‐coated PGE1 improves peritoneal transport and reduces inflammation in peritoneal dialysis: A randomized clinical pilot trial

2021 ◽  
Author(s):  
Jianwen Wang ◽  
Shiqi Tang ◽  
Yang Xie ◽  
Jun Liu ◽  
Jishi Liu ◽  
...  
1998 ◽  
Vol 18 (2) ◽  
pp. 188-192 ◽  
Author(s):  
Andrzej Breborowicz ◽  
Katarzyna Wieczorowska Tobis ◽  
Katarzyna Korybalska ◽  
Alicja Polubinska ◽  
Maciej Radkowski ◽  
...  

Objective To assess the effect of an inhibitor of nitric oxide synthesis [NG-nitro-L-arginine methyl ester (L-NAME)] on peritoneal transport during peritoneal dialysis (PD) and peritonitis in rats. Methods The authors studied peritoneal transport of small and large solutes, and net ultrafiltration (UF) in rats during PD with Dianeal 3.86 (Baxter, McGaw Park, IL, U.S.A.). They evaluated the effect of L-NAME used as an additive to dialysis fluid in concentrations 0.5 -5 mg/m L on peritoneal transport of small and large molecules and on transperitoneal UF. In addition, they studied the effect of L-NAME (5 mg/mL) during acute peritonitis induced by lipopolysaccharides (5 μg/mL) given intraperitoneally. Results The addition of L-NAME to dialysis fluid increased the selectivity of the peritoneum and net UF during dialysis. Lipopolysaccharides used as an additive to the dialysis fluid, together with L-NAME, did not induce changes in transperitoneal transport of small and large solutes and did not cause a significant decline in net UF. L-NAME given intraperitoneally reduced both local and systemic production of nitric oxide, which might explain its effects on peritoneal transport. Conclusions Nitric oxide is an important mediator of changes in peritoneal transport and its effect is especially significant during peritonitis.


2016 ◽  
Vol 36 (5) ◽  
pp. 555-561 ◽  
Author(s):  
Vicente Pérez-Díaz ◽  
Alfonso Pérez-Escudero ◽  
Sandra Sanz-Ballesteros ◽  
Guadalupe Rodríguez-Portela ◽  
Susana Valenciano-Martínez ◽  
...  

Background Peritoneal dialysis (PD) has limited power for liquid extraction (ultrafiltration), so fluid overload remains a major cause of treatment failure. Methods We present steady concentration peritonal dialysis (SCPD), which increases ultrafiltration of PD exchanges by maintaining a constant peritoneal glucose concentration. This is achieved by infusing 50% glucose solution at a constant rate (typically 40 mL/h) during the 4-hour dwell of a 2-L 1.36% glucose exchange. We treated 21 fluid overload episodes on 6 PD patients with high or average-high peritoneal transport characteristics who refused hemodialysis as an alternative. Each treatment consisted of a single session with 1 to 4 SCPD exchanges (as needed). Results Ultrafiltration averaged 653 ± 363 mL/4 h — twice the ultrafiltration of the peritoneal equilibration test (PET) (300 ± 251 mL/4 h, p < 0.001) and 6-fold the daily ultrafiltration (100 ± 123 mL/4 h, p < 0.001). Serum and peritoneal glucose stability and dialysis efficacy were excellent (glycemia 126 ± 25 mg/dL, peritoneal glucose 1,830 ± 365 mg/dL, D/P creatinine 0.77 ± 0.08). The treatment reversed all episodes of fluid overload, avoiding transfer to hemodialysis. Ultrafiltration was proportional to fluid overload ( p < 0.01) and inversely proportional to final peritoneal glucose concentration ( p < 0.05). Conclusion This preliminary clinical experience confirms the potential of SCPD to safely and effectively increase ultrafiltration of PD exchanges. It also shows peritoneal transport in a new dynamic context, enhancing the influence of factors unrelated to the osmotic gradient.


Author(s):  
Joanna Stachowska-Pietka ◽  
Jacek Waniewski ◽  
Bengt Lindholm

The principles of peritoneal dialysis are based on the physiological processes and their driving forces which permit the exchange of water (by ultrafiltration and fluid absorption) and solutes (by diffusion and convective transport) between the peritoneal microvasculature and the dialysate. In peritoneal dialysis, the peritoneal transport system—mesenchymal cells, interstitium, microvasculature, and lymphatics—is repeatedly exposed to high concentrations of an osmotic agent, and a volume load, leading to increased intraperitoneal hydrostatic and osmotic pressure. This results in immediate as well as long-term structural and functional changes of the peritoneal transport system. Clinical tests supplemented with mathematical modelling have been developed to monitor the quantitative characteristics of the peritoneal transport system, allowing detection and diagnosis of various problems and guidance when predicting consequences of changes in prescription.


2019 ◽  
Vol 51 (11) ◽  
pp. 2055-2061
Author(s):  
Jinjin Fan ◽  
Qunying Guo ◽  
Qian Zhou ◽  
Chunyan Yi ◽  
Jianxiong Lin ◽  
...  

1996 ◽  
Vol 19 (4) ◽  
pp. 221-231
Author(s):  
G. Amici

Four non-linear and five linear models for predicting the creatinine dialysate/plasma ratio (CRD/P) and the glucose dialysate/initial concentration ratio (GLD/Do) were evaluated in a group of 31 patients on peritoneal dialysis and subjected to the peritoneal equilibration test (PET 3.86%, 240'). PET results and classification were compared to obtain a definition of patient peritoneal transport characteristics. The monomolecular and rectangular hyperbola non-linear models, the Lineweaver-Burk, Hanes-Woolf and Dadone linear transformations were considered for the CRD/P fitting. A monoexponential and two-exponential decay plus the semilogarithmic transformations were considered for the GLD/Do. These models are simple, accurate and functionally homogeneous. Further studies are advisable however on the individual peritoneal transport classification, since ∼30% of the patients were in different categories for CRD/P and GLD/Do and the fittings do not give better classification results.


2020 ◽  
pp. 089686082097151
Author(s):  
Jacek Waniewski ◽  
Joanna Stachowska-Pietka ◽  
Bengt Lindholm

The transitory change of fluid and solute transport parameters occurring during the initial phase of a peritoneal dialysis dwell is a well-documented phenomenon; however, its physiological interpretation is rather hypothetical and has been disputed. Two different explanations were proposed: (1) the prevailing view—supported by several experimental and clinical studies—is that a vasodilatory effect of dialysis fluid affects the capillary surface area available for dialysis, and (2) a recently presented alternative explanation is that the molecular radius of glucose increases due to the high glucose concentration in fresh dialysis fluid and that this change affects peritoneal transport parameters. The experimental bases for both phenomena are discussed as well as the problem of the accuracy necessary for a satisfactory description of clinical data when the three-pore model of peritoneal transport is applied. We show that the correction for the change of transport parameters with dwell time provides a better fit with clinical data when applying the three-pore model. Our conclusion is in favor of the traditional interpretation namely that the transitory change of transport parameters with dwell time during peritoneal dialysis is primarily due to the vasodilatory effect of dialysis fluids.


Sign in / Sign up

Export Citation Format

Share Document