A review of the biology, distribution patterns and management of the invasive species Amaranthus palmeri S. Watson (Palmer amaranth): Current and future management challenges

Weed Research ◽  
2021 ◽  
Author(s):  
Jason Roberts ◽  
Singarayer Florentine
2021 ◽  
pp. 1-18
Author(s):  
Levi D. Moore ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
Ramon G. Leon ◽  
David L. Jordan ◽  
...  

Abstract Field studies were conducted to evaluate linuron for POST control of Palmer amaranth in sweetpotato to minimize reliance on protoporphyrinogen oxidase (PPO)-inhibiting herbicides. Treatments were arranged in a two by four factorial where the first factor consisted of two rates of linuron (420 and 700 g ai ha−1), and the second factor consisted of linuron applied alone or in combinations of linuron plus a nonionic surfactant (NIS) (0.5% v/v), linuron plus S-metolachlor (800 g ai ha−1), or linuron plus NIS plus S-metolachlor. In addition, S-metolachlor alone and nontreated weedy and weed-free checks were included for comparison. Treatments were applied to ‘Covington’ sweetpotato 8 d after transplanting (DAP). S-metolachlor alone provided poor Palmer amaranth control because emergence had occurred at applications. All treatments that included linuron resulted in at least 98 and 91% Palmer amaranth control 1 and 2 wk after treatment (WAT), respectively. Including NIS with linuron did not increase Palmer amaranth control compared to linuron alone, but increased sweetpotato injury and subsequently decreased total sweetpotato yield by 25%. Including S-metolachlor with linuron resulted in the greatest Palmer amaranth control 4 WAT, but increased crop foliar injury to 36% 1 WAT compared to 17% foliar injury from linuron alone. Marketable and total sweetpotato yield was similar between linuron alone and linuron plus S-metolachlor or S-metolachlor plus NIS treatments, though all treatments resulted in at least 39% less total yield than the weed-free check resulting from herbicide injury and/or Palmer amaranth competition. Because of the excellent POST Palmer amaranth control from linuron 1 WAT, a system including linuron applied 7 DAP followed by S-metolachlor applied 14 DAP could help to extend residual Palmer amaranth control further into the critical period of weed control while minimizing sweetpotato injury.


2021 ◽  
pp. 1-9
Author(s):  
Clint W. Beiermann ◽  
Cody F. Creech ◽  
Stevan Z. Knezevic ◽  
Amit J. Jhala ◽  
Robert Harveson ◽  
...  

Abstract A prepackaged mixture of desmedipham + phenmedipham was previously labeled for control of Amaranthus spp. in sugarbeet. Currently, there are no effective POST herbicide options to control glyphosate-resistant Palmer amaranth in sugarbeet. Sugarbeet growers are interested in using desmedipham + phenmedipham to control escaped Palmer amaranth. In 2019, a greenhouse experiment was initiated near Scottsbluff, NE, to determine the selectivity of desmedipham and phenmedipham between Palmer amaranth and sugarbeet. Three populations of Palmer amaranth and four sugarbeet hybrids were evaluated. Herbicide treatments consisted of desmedipham and phenmedipham applied singly or as mixtures at an equivalent rate. Herbicides were applied when Palmer amaranth and sugarbeet were at the cotyledon stage, or two true-leaf sugarbeet stage and when Palmer amaranth was 7 cm tall. The selectivity indices for desmedipham, phenmedipham, and desmedipham + phenmedipham were 1.61, 2.47, and 3.05, respectively, at the cotyledon stage. At the two true-leaf application stage, the highest rates of desmedipham and phenmedipham were associated with low mortality rates in sugarbeet, resulting in a failed response of death. The highest rates of desmedipham + phenmedipham caused a death response of sugarbeet; the selectivity index was 2.15. Desmedipham treatments resulted in lower LD50 estimates for Palmer amaranth compared to phenmedipham, indicating that desmedipham can provide greater levels of control for Palmer amaranth. However, desmedipham also caused greater injury in sugarbeet, producing lower LD50 estimates compared to phenmedipham. Desmedipham + phenmedipham provided 90% or greater control of cotyledon-size Palmer amaranth at a labeled rate but also caused high levels of sugarbeet injury. Neither desmedipham, phenmedipham, nor desmedipham + phenmedipham was able to control 7-cm tall Palmer amaranth at previously labeled rates. Results indicate that desmedipham + phenmedipham can only control Palmer amaranth if applied at the cotyledon stage and a high level of sugarbeet injury is acceptable.


2012 ◽  
Vol 39 (2) ◽  
pp. 121-126 ◽  
Author(s):  
Gurinderbir S. Chahal ◽  
David L. Jordan ◽  
Barbara B. Shew ◽  
Rick L. Brandenburg ◽  
James D. Burton ◽  
...  

Abstract A range of fungicides and herbicides can be applied to control pests and optimize peanut yield. Experiments were conducted in North Carolina to define biological and physicochemical interactions when clethodim and 2,4-DB were applied alone or with selected fungicides. Pyraclostrobin consistently reduced large crabgrass [Digitaria sanguinalis (L.) Scop.] control by clethodim. Chlorothalonil and tebuconazole plus trifloxystrobin reduced large crabgrass control by clethodim in two of four experiments while prothioconazole plus tebuconazole and flutriafol did not affect control. Palmer amaranth [Amaranthus palmeri S. Wats] control by 2,4-DB was not affected by these fungicides. Although differences in spray solution pH were noted among mixtures of clethodim plus crop oil concentrate or 2,4-DB and fungicides, the range of pH was 4.40 to 4.92 and 6.72 to 7.20, respectively, across sampling times of 0, 6, 24, and 72 h after solution preparation. Permanent precipitates were formed when clethodim, crop oil concentrate, and chlorothalonil were co-applied at each sampling interval. Permanent precipitates were not observed when clethodim and crop oil concentrate were included with other fungicides or when 2,4-DB was mixed with fungicides. Significant positive correlations were noted for Palmer amaranth control by 2,4-DB and solution pH but not for clethodim and solution pH.


Weed Science ◽  
2003 ◽  
Vol 51 (4) ◽  
pp. 523-531 ◽  
Author(s):  
Rafael A. Massinga ◽  
Randall S. Currie ◽  
Todd P. Trooien

cftm ◽  
2021 ◽  
Author(s):  
Levi D. Moore ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
David L. Jordan ◽  
Michael D. Boyette ◽  
...  

2018 ◽  
Vol 32 (5) ◽  
pp. 586-591
Author(s):  
Samuel J. McGowen ◽  
Katherine M. Jennings ◽  
Sushila Chaudhari ◽  
David W. Monks ◽  
Jonathan R. Schultheis ◽  
...  

AbstractField studies were conducted in North Carolina to determine the critical period for Palmer amaranth control (CPPAC) in pickling cucumber. In removal treatments (REM), emerged Palmer amaranth were allowed to compete with cucumber for 14, 21, 28, or 35 d after sowing (DAS) in 2014 and 14, 21, 35, or 42 DAS in 2015, and cucumber was kept weed-free for the remainder of the season. In the establishment treatments (EST), cucumber was maintained free of Palmer amaranth by hand removal until 14, 21, 28, or 35 DAS in 2014 and until 14, 21, 35, or 42 DAS in 2015; after this, Palmer amaranth was allowed to establish and compete with the cucumber for the remainder of the season. The beginning and end of the CPPAC, based on 5% loss of marketable yield, was determined by fitting log-logistic and Gompertz equations to the relative yield data representing REM and EST, respectively. Season-long competition by Palmer amaranth reduced pickling cucumber yield by 45% to 98% and 88% to 98% during 2014 and 2015, respectively. When cucumber was planted on April 25, 2015, the CPPAC ranged from 570 to 1,002 heat units (HU), which corresponded to 32 to 49 DAS. However, when cucumber planting was delayed 2 to 4 wk (May 7 and May 21, 2014 and May 4, 2015), the CPPAC lasted from 100 to 918 HU (7 to 44 DAS). This research suggested that planting pickling cucumber as early as possible during the season may help to reduce competition by Palmer amaranth and delay the beginning of the CPPAC.


2013 ◽  
Vol 27 (2) ◽  
pp. 291-297 ◽  
Author(s):  
Kelly A. Barnett ◽  
A. Stanley Culpepper ◽  
Alan C. York ◽  
Lawrence E. Steckel

Glyphosate-resistant (GR) weeds, especially GR Palmer amaranth, are very problematic for cotton growers in the Southeast and Midsouth regions of the United States. Glufosinate can control GR Palmer amaranth, and growers are transitioning to glufosinate-based systems. Palmer amaranth must be small for consistently effective control by glufosinate. Because this weed grows rapidly, growers are not always timely with applications. With widespread resistance to acetolactate synthase-inhibiting herbicides, growers have few herbicide options to mix with glufosinate to improve control of larger weeds. In a field study using a WideStrike®cotton cultivar, we evaluated fluometuron at 140 to 1,120 g ai ha−1mixed with the ammonium salt of glufosinate at 485 g ae ha−1for control of GR Palmer amaranth 13 and 26 cm tall. Standard PRE- and POST-directed herbicides were included in the systems. Glufosinate alone injured the WideStrike® cotton less than 10%. Fluometuron increased injury up to 25% but did not adversely affect yield. Glufosinate controlled 13-cm Palmer amaranth at least 90%, and there was no improvement in weed control nor a cotton yield response to fluometuron mixed with glufosinate. Palmer amaranth 26 cm tall was controlled only 59% by glufosinate. Fluometuron mixed with glufosinate increased control of the larger weeds up to 28% and there was a trend for greater yields. However, delaying applications until weeds were 26 cm reduced yield 22% relative to timely application. Our results suggest fluometuron mixed with glufosinate may be of some benefit when attempting to control large Palmer amaranth. However, mixing fluometuron with glufosinate is not a substitute for a timely glufosinate application.


2018 ◽  
Vol 32 (5) ◽  
pp. 579-585 ◽  
Author(s):  
Shilpa Singh ◽  
Nilda Roma-Burgos ◽  
Vijay Singh ◽  
Ed Allan L. Alcober ◽  
Reiofeli Salas-Perez ◽  
...  

AbstractWe conducted a greenhouse study to evaluate the differential response of Palmer amaranth to glyphosate and mesotrione and to quantify the level of tolerance to mesotrione in recalcitrant (difficult-to-control) accessions and their offspring. Seeds were collected from 174 crop fields (corn, cotton, and soybean) across Arkansas between 2008 and 2016. Palmer amaranth seedlings (7 to 10 cm tall) were treated with glyphosate at 840 g ae ha–1or mesotrione at 105 g ha–1. Overall, 47% of the accessions (172) were resistant to glyphosate with 68% survivors. Almost 35% of accessions were highly resistant, with 90% survivors. The majority of survivors from glyphosate application incurred between 31% and 60% injury. Mesotrione killed 66% of the accessions (174); the remaining accessions had survivors with injury ranging from 61% to 90%. Accessions with the least response to mesotrione were selected to determine tolerance level. Dose–response assays were conducted with four recalcitrant populations and their F1progeny. The average effective doses (ED50) for the parent accessions and F1progeny of survivors were 21.5 g ha–1and 27.5 g ha–1, respectively. The recalcitrant parent populations were three- to five-fold more tolerant to mesotrione than the known susceptible population, as were the F1progeny.


Weed Science ◽  
2019 ◽  
Vol 67 (1) ◽  
pp. 126-135 ◽  
Author(s):  
Nicholas E. Korres ◽  
Jason K. Norsworthy ◽  
Andy Mauromoustakos

AbstractInformation about weed biology and weed population dynamics is critical for the development of efficient weed management programs. A field experiment was conducted in Fayetteville, AR, during 2014 and 2015 to examine the effects of Palmer amaranth (Amaranthus palmeriS. Watson) establishment time in relation to soybean [Glycine max(L.) Merr.] emergence and the effects ofA. palmeridistance from the soybean row on the weed’s height, biomass, seed production, and flowering time and on soybean yield. The establishment time factor, in weeks after crop emergence (WAE), was composed of six treatment levels (0, 1, 2, 4, 6, and 8 WAE), whereas the distance from the crop consisted of three treatment levels (0, 24, and 48 cm). Differences inA. palmeribiomass and seed production averaged across distance from the crop were found at 0 and 1 WAE in both years. Establishment time had a significant effect onA. palmeriseed production through greater biomass production and height increases at earlier dates.Amaranthus palmerithat was established with the crop (0 WAE) overtopped soybean at about 7 and 10 WAE in 2014 and 2015, respectively. Distance from the crop affectedA. palmeriheight, biomass, and seed production. The greater the distance from the crop, the higherA. palmeriheight, biomass, and seed production at 0 and 1 WAE compared with other dates (i.e., 2, 4, 6, and 8 WAE).Amaranthus palmeriestablishment time had a significant impact on soybean yield, but distance from the crop did not. The earlierA. palmeriinterfered with soybean (0 and 1 WAE), the greater the crop yield reduction; after that period no significant yield reductions were recorded compared with the rest of the weed establishment times. Knowledge ofA. palmeriresponse, especially at early stages of its life cycle, is important for designing efficient weed management strategies and cropping systems that can enhance crop competitiveness. Control ofA. palmeriwithin the first week after crop emergence or reduced distance between crop and weed are important factors for an effective implementation of weed management measures againstA. palmeriand reduced soybean yield losses due to weed interference.


Sign in / Sign up

Export Citation Format

Share Document