scholarly journals Fracture Property of Concrete on Spherical and Flat Nose Shape Projectile Impact

Author(s):  
Sang-Kyu Lee ◽  
Gyu-Yong Kim ◽  
Hong-Seop Kim ◽  
Min-Jae Son ◽  
Jeong-Soo Nam
Author(s):  
Agnieszka Jankowska ◽  
Joanna Janiszewska-Olszowska ◽  
Katarzyna Grocholewicz

Nose shape, size, and inclination influence facial appearance, but few studies concern the relationship between the nasal profile and craniofacial structures. The objective of this study was to analyze association of nasal cephalometric variables with skeletal structures, age, and sex. Cephalometric and nasal analysis was performed in 386 Polish orthodontic patients (aged 9–25 years). Student t-test and Mann–Whitney test were used to compare quantitative variables and Pearson’s or Spearman’s correlation coefficients—to find correlations. Soft tissue facial convexity angle correlates to Holdaway ratio, ANB (A-Nasion-B), and Wits appraisal. Nasal dorsum axis, nose length, nose depth (1) and nose depth (2), nose hump, lower dorsum convexity, and columella convexity increase with age. Nasal base angle, nasolabial angle, nasomental angle, soft tissue facial convexity and nasal bone angle decrease with age. Nasal base angle and nasomental angle are smaller in females. Thus, a relationship exists between nasal morphology and sagittal jaw configuration. Nasal parameters significantly change with age. Sexual dimorphism characterizes nasal bone angle and nasomental angle.


2021 ◽  
Vol 1764 (1) ◽  
pp. 012151
Author(s):  
C S Silvia ◽  
M Ikhsan ◽  
A Wirayuda ◽  
Mastiar
Keyword(s):  

Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 63
Author(s):  
Anna L. Mina ◽  
Michael F. Petrou ◽  
Konstantinos G. Trezos

The scope of this paper is to investigate the performance of ultra-high performance fiber reinforced concrete (UHPFRC) concrete slabs, under projectile impact. Mixture performance under impact loading was examined using bullets with 7.62 mm diameter and initial velocity 800 m/s. The UHPFRC, used in this study, consists of a combination of steel fibers of two lengths: 6 mm and 13 mm with the same diameter of 0.16 mm. Six composition mixtures were tested, four UHPFRC, one ultra-high performance concrete (UHPC), without steel fibers, and high strength concrete (HSC). Slabs with thicknesses of 15, 30, 50, and 70 mm were produced and subjected to real shotgun fire in the field. Penetration depth, material volume loss, and crater diameter were measured and analyzed. The test results show that the mixture with a combination of 3% 6 mm and 3% of 13 mm length of steel fibers exhibited the best resistance to projectile impact and only the slabs with 15 mm thickness had perforation. Empirical models that predict the depth of penetration were compared with the experimental results. This material can be used as an overlay to buildings or to construct small precast structures.


ACS Nano ◽  
2021 ◽  
Vol 15 (2) ◽  
pp. 2439-2446
Author(s):  
Jinho Hyon ◽  
Manny Gonzales ◽  
Jason K. Streit ◽  
Omri Fried ◽  
Olawale Lawal ◽  
...  

2006 ◽  
Vol 38 (1) ◽  
pp. 176-191 ◽  
Author(s):  
S. Dey ◽  
T. Børvik ◽  
O.S. Hopperstad ◽  
M. Langseth

2013 ◽  
Vol 535-536 ◽  
pp. 539-542
Author(s):  
M.A. Iqbal ◽  
G. Tiwari ◽  
P.K. Gupta

The influence of target span as well as configuration was studied with 1 mm thick 1100H12 aluminum target subjected to19 mm diameter ogive nosed projectile impact. The effective span of 1 mm thick monolithic target was varied as 95, 190, 285, 380 and 475 mm. The configuration of 255 mm span diameter target was varied as 1 mm thick monolithic, double layered in-contact (2 x 0.5 mm) and double layered spaced. The spacing between the layers was also varied as 2, 5, 10 and 20 mm. The target was impacted normally by ogive nosed projectile to obtain the ballistic limit, failure mode and deformation. The ballistic limit was found to increase with an increase in span diameter. The monolithic target offered highest ballistic limit followed by layered in-contact and spaced targets respectively. The variation of spacing between the layers did not have significant influence on the ballistic limit.


Author(s):  
S R Reid ◽  
C Peng ◽  
J N Ashton

The results of an extensive experimental programme on local loading of composite pipes are presented. Particular attention is directed to the influence of projectile nose shape on the damage tolerance of the pipes. Both filament wound pipes and lined chopped-strand mat pipes are considered.


Author(s):  
Yoshihito Yamamoto ◽  
Soichiro Okazaki ◽  
Hikaru Nakamura ◽  
Masuhiro Beppu ◽  
Taiki Shibata

In this paper, numerical simulations of reinforced mortar beams subjected to projectile impact are conducted by using the proposed 3-D Rigid-Body-Spring Model (RBSM) in order to investigate mechanisms of crack propagation and scabbing mode of concrete members under high-velocity impact. The RBSM is one of the discrete-type numerical methods, which represents a continuum material as an assemblage of rigid particle interconnected by springs. The RBSM have advantages in modeling localized and oriented phenomena, such as cracking, its propagation, frictional slip and so on, in concrete structures. The authors have already developed constitutive models for the 3D RBSM with random geometry generated Voronoi diagram in order to quantitatively evaluate the mechanical responses of concrete including softening and localization fractures, and have shown that the model can simulate cracking and various failure modes of reinforced concrete structures. In the target tests, projectile velocity is set 200m/s. The reinforced mortar beams with or without the shear reinforcing steel plates were used to investigate the effects of shear reinforcement on the crack propagation and the local failure modes. By comparing the numerical results with the test results, it is confirmed that the proposed model can reproduce well the crack propagation and the local failure behaviors. In addition, effects of the reinforcing plates on the stress wave and the crack propagation behaviors are discussed from the observation of the numerical simulation results. As a result, it was found that scabbing of reinforced mortar beams subjected to high velocity impact which is in the range of the tests is caused by mainly shear deformation of a beam.


Sign in / Sign up

Export Citation Format

Share Document