scholarly journals NITROGEN REMOVAL FROM MUNICIPAL WASTEWATER USING INTEGRATED FIXED FILM ACTIVATED SLUDGE PROCESS AND ANOXIC PROCESS

2019 ◽  
Vol 9 (2) ◽  
pp. 17-27
Author(s):  
Nway Nway Khaing ◽  
Theingi Ye Myint ◽  
Cho Cho Thin Kyi

This research was carried out using lab-scaled Integrated Fixed Film Activated Sludge (IFAS) process with fabious media and anoxic process in order to reduce the concentration of ammonia nitrogen and nitrate nitrogen in municipal wastewater from Yangon City, Myanmar. The required wastewater sample was collected from the wastewater treatment plant of Yangon City Development Committee (YCDC). Ten experiments were conducted with five operational conditions and they lasted about four months from February to May 2018. The rate of air supply for the aeration tank through these experiments was about 8 m3 /day. This paper describes the evaluation on nitrogen removal efficiency of the lab-scaled treatment system depending on the results from the experiments. Due to the different operational conditions through these experiments, the F/M ratio of IFAS process varied between 0.1 and 0.9 d -1 and SRT of IFAS process ranged between 6.0 days and 8.3 days. Moreover, the F/M ratio fluctuated between 0.2 d -1 and 0.7 d -1 as well as the Specific Rate of Denitrification (SRDN) altered between 0.23 g NO3-N/g MLSS and 0.33 g NO3-N/g MLSS in the anoxic process. According to the outcomes of the experiments, the maximum removal efficiency for ammonia nitrogen and nitrate nitrogen were about 98.2% and 97.7%, respectively. However, the optimum treatment efficiency for both NH3-N and NO3-N concentration was obtained at the ninth experiment with about 0.1 d-1 of the F/M ratio and about 6.4 days of SRT in aerobic reactor while the F/M ratio, SRDN and anoxic residence time of anoxic process were about 0.26 d-1 , 0.27 g NO3-N/ g MLSS and 48 hours, respectively. About 500 mg/l of ammonia nitrogen can be reduced to about 30 mg/l and about 2600 mg/l of nitrate nitrogen can be reduced to about 61 mg/l, respectively in this ninth experiment. The optimum treatment efficiency for ammonia nitrogen and nitrate nitrogen were about 94.0 % and 98.0 %, respectively.

2017 ◽  
Vol 41 (2) ◽  
pp. 237-247 ◽  
Author(s):  
Paul Moretti ◽  
Jean-Marc Choubert ◽  
Jean-Pierre Canler ◽  
Pierre Buffière ◽  
Olivier Pétrimaux ◽  
...  

2015 ◽  
Vol 73 (4) ◽  
pp. 827-834 ◽  
Author(s):  
Yang Bai ◽  
Yaobin Zhang ◽  
Xie Quan ◽  
Shuo Chen

An integrated fixed-film activated sludge (IFAS) process (G1) and an activated sludge anoxic–oxic process (G2) were operated at nitrate liquor recirculation ratio (R) of 100, 200 and 300% to investigate the feasibility of enhancing nitrogen removal efficiency (RTN) and reducing R by improving simultaneous nitrification and denitrification (SND) in the IFAS process. The results showed that the effluent NH4+-N and total nitrogen (TN) of G1 at R of 200% were less than 1.5 and 14.5 mg/L, satisfying the Chinese discharge standard (NH4+-N < 5 mg/L; TN < 15 mg/L). However, the effluent NH4+-N and TN of G2 at R of 300% were higher than 8.5 and 15.3 mg/L. It indicated that better RTN could be achieved at a lower R in the IFAS process. The polymerase chain reaction–denaturing gradient gel electrophoresis results implied that nitrifiers and denitrifiers co-existed in one microbial community, facilitating the occurrence of SND in the aerobic reactor of G1, and the contribution of SND to TN removal efficiency ranged 15–19%, which was the main reason that the RTN was improved in the IFAS process. Therefore, the IFAS process was an effective method for improving RTN and reducing R. In practical application, this advantage of the IFAS process can decrease the electricity consumption for nitrate liquor recirculation flow, thereby saving operational costs.


2015 ◽  
Vol 71 (10) ◽  
pp. 1500-1506 ◽  
Author(s):  
P. Moretti ◽  
J. M. Choubert ◽  
J. P. Canler ◽  
O. Petrimaux ◽  
P. Buffiere ◽  
...  

The objective of this study is to improve knowledge on the integrated fixed-film-activated sludge (IFAS) system designed for nitrogen removal. Biofilm growth and its contribution to nitrification were monitored under various operating conditions in a semi-industrial pilot-scale plant. Nitrification rates were observed in biofilms developed on free-floating media and in activated sludge operated under a low sludge retention time (4 days) and at an ammonia loading rate of 45–70 gNH4-N/kgMLVSS/d. Operational conditions, i.e. oxygen concentration, redox potential, suspended solids concentration, ammonium and nitrates, were monitored continuously in the reactors. High removal efficiencies were observed for carbon and ammonium at high-loading rate. The contribution of biofilm to nitrification was determined as 40–70% of total NOx-N production under the operating conditions tested. Optimal conditions to optimize process compacity were determined. The tested configuration responds especially well to winter and summer nitrification conditions. These results help provide a deeper understanding of how autotrophic biomass evolves through environmental and operational conditions in IFAS systems.


2019 ◽  
Vol 25 (4) ◽  
pp. 554-560 ◽  
Author(s):  
Jin-Su Kim ◽  
Ji-Young Lee ◽  
Seung-Kyu Choi ◽  
Qian Zhu ◽  
Sang-Ill Lee

This study focuses on nitrification through a biological aerated filter (BAF) that is filled with a zeolite medium at low concentrations of ammonia. The zeolite medium consists of natural zeolite powder. The BAF is operated under two types of media, which are a ball-type zeolite medium and expanded poly propylene (EPP) medium. Nitrification occurred in the zeolite BAF (ZBAF) when the influent concentration of ammonia nitrogen was 3 mg L-1, but the BAF that was filled with an EPP medium did not experience nitrification. The ammonia nitrogen removal efficiency of ZBAF was 63.38% and the average nitrate nitrogen concentration was 1.746 mg/L. The ZBAF was tested again after a comparison experiment to treat pond water, and municipal wastewater mixed pond water. The ZBAF showed remarkable ammonia-nitrogen treatment at low concentration and low temperature. During this period, the average ammonia nitrogen removal efficiency was 64.56%. Especially, when water temperature decreased to 4.7℃, ammonia nitrogen removal efficiency remained 79%. On the other hand, the chemical-oxygen demand (COD) and phosphorus-removal trends were different. The COD and phosphorus did not show as efficient treatment as the ammonia-nitrogen treatment.


2019 ◽  
Vol 800 ◽  
pp. 122-131
Author(s):  
Miks Neibergs ◽  
Elīna Strade ◽  
Vizma Nikolajeva ◽  
Igors Susinskis ◽  
Dzintars Rozitis ◽  
...  

Ecological harm and human health risks caused by environmental pollution with active pharmaceutical ingredients (API) nowadays is recognised as issue of growing concern. Widespread presence of human and veterinary API in aquatic environment clearly indicates persistence and low removal efficiency of these compounds at conventional pharmaceutical and municipal wastewater treatment plants (WWTP). Bioaugmentation of activated sludge systems with specialized microorganisms could be a powerful and environmentally friendly tool to enhance the removal efficiency of recalcitrant API. Selection of inoculum strains, that have appropriate enzymatic pathways to metabolise complex molecules of API, belonging to different therapeutic classes, is of great importance. This study evaluated the potential of pure cultures of 10 bacteria, 10 yeasts and 3 filamentous fungi previously isolated from activated sludge of pharmaceutical WWTP to degrade less investigated API – Oxytocin, Zopiclone and Meldonium dihydrate as sole carbon source and in cometabolic manner with presence of skim milk powder as additional nutrient source. Bacteria Sphingobacterium thalpophilum and filamentous fungi Fusarium solani and Fusarium udum showed very high treatment efficiency of all tested API in laboratory-scale bioaugmentation tests and were recognized as culture with high metabolic potential to be used in bioaugmentation for removal of pharmaceutical micropollutants.


1991 ◽  
Vol 24 (5) ◽  
pp. 233-240 ◽  
Author(s):  
Nik Fuaad Nik Abllah ◽  
Aik Heng Lee

A laboratory study was conducted to determine the feasibility of batch activated sludge reactor for treating pineapple wastewater and to examine the effects of bioaugmentation on treatment performance. The experimental set-up consists of eleven batch reactors. Activated sludge obtained from a wastewater treatment plant treating domestic wastewater was used as seed for the reactors. Synthetic pineapple wastewater was used as feed for the reactors. The eleven reactors were arranged to evaluate the total organic removal, nitrification, and sludge production by bioaugmentation process. Three major factors considered were influent organic loading, ammonia-nitrogen, and dosage of bacterial-culture-product addition. Removal of TOG (total organic carbon), sludge production in terms of SS(suspended solids), and ammonia-nitrogen removal variation are used as evaluation parameters. The TOC removal efficiency after the end of a 48 hour reactor run, for influent TOC of 350.14 to 363.30 mg/l, and 145.92 to 169.66 mg/l, was 94.41 to 95.89%, and 93.72 to 94.73% respectively. Higher organic removal was observed in the bioaugmented reactors with higher organic loading. The better organic removal efficiency in the bioaugmented reactors was probably due to activities of bacteria added. The test results also indicated that sludge yield was enhanced by the bacteria additive and high bacteria dosage produced less sludge. Bioaugmentation was observed to be a suitable alternative for enhancing the biological treatment of pineapple wastewater.


2017 ◽  
Vol 77 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Yanjun Mao ◽  
Xie Quan ◽  
Huimin Zhao ◽  
Yaobin Zhang ◽  
Shuo Chen ◽  
...  

Abstract The activated sludge (AS) process is widely applied in dyestuff wastewater treatment plants (WWTPs); however, the nitrogen removal efficiency is relatively low and the effluent does not meet the indirect discharge standards before being discharged into the industrial park's WWTP. Hence it is necessary to upgrade the WWTP with more advanced technologies. Moving bed biofilm processes with suspended carriers in an aerobic tank are promising methods due to enhanced nitrification and denitrification. Herein, a pilot-scale integrated free-floating biofilm and activated sludge (IFFAS) process was employed to investigate the feasibility of enhancing nitrogen removal efficiency at different hydraulic retention times (HRTs). The results showed that the effluent chemical oxygen demand (COD), ammonium nitrate (NH4+-N) and total nitrogen (TN) concentrations of the IFFAS process were significantly lower than those of the AS process, and could meet the indirect discharge standards. PCR-DGGE and FISH results indicated that more nitrifiers and denitrifiers co-existed in the IFFAS system, promoting simultaneous nitrification and denitrification. Based on the pilot results, the IFFAS process was used to upgrade the full-scale AS process, and the effluent COD, NH4+-N and TN of the IFFAS process were 91–291 mg/L, 10.6–28.7 mg/L and 18.9–48.6 mg/L, stably meeting the indirect discharge standards and demonstrating the advantages of IFFAS in dyestuff wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document