scholarly journals Experimental Evaluation of a Novel Backflush Controller for Immersed Membrane Systems

2017 ◽  
Vol 4 (1) ◽  
Author(s):  
L. Erdei ◽  
S. Vigneswaran ◽  
P. J. Smith

Membrane backflush with air or permeate is commonly employed to reduce fouling in immersed micro– and ultrafiltration (MF/UF). Membrane plants traditionally rely on simple timer control automation to initiate periodic backflushes for membrane cleaning. In this study, a closed–loop (feedback) type backflush controller was evaluated experimentally with a bench–scale hollow fibre immersed MF/UF membrane – flocculation hybrid system.The controller showed an unexpected behaviour at low fouling rates, which was manifested in significantly varying filtration periods. The investigation identified the cause in the use of a constant stabilisation lag parameter.The role of this control parameter was to determine the reversible component of fouling in real–time, which is a difficult problem in transient flow conditions that characterise the start of filtration periods. The resulting error became significant at low fouling rates and impaired effective control.Based on this insight, we propose alternative, more robust control parameters, which can provide improved backwash control solutions for MF/UF membrane applications.

Author(s):  
Greg Sorge

Automatic controls have been used on all types of machinery since the first complicated machines became popular in the 19th century. Controls are used to maintain pressures, temperatures, operating speeds, flows and many other operating parameters. Natural gas engines have used a variety of controls for various purposes since the first natural gas engines were produced. This paper will discuss the history of mechanical controls used on natural gas engines and the introduction and application of electronic controls. The paper will discuss open loop (mapping) and closed loop (feedback) type controls and common applications of each. Mechanical control systems such as governors, fuel regulators, fuel mixing valves, thermostats, and turbocharger wastegates will be discussed and classified as open or closed loop controls. Electronic control systems such as governors, air/fuel ratio controls, detonation controls, and turbocharger controls will also be discussed and classified. This paper will also discuss state of the art controls which perform numerous functions to get desired performance, and can be communicated with remotely.


2015 ◽  
Vol 57 (17) ◽  
pp. 7742-7752 ◽  
Author(s):  
Tahir Majeed ◽  
Sherub Phuntsho ◽  
Laura Chekli ◽  
Sang-Hak Lee ◽  
Kwonil Kim ◽  
...  

Lab on a Chip ◽  
2021 ◽  
Author(s):  
Ningquan Wang ◽  
Ruxiu Liu ◽  
Norh Asmare ◽  
Chia-Heng Chu ◽  
Ozgun Civelekoglu ◽  
...  

An adaptive microfluidic system changing its operational state in real-time based on cell measurements through an on-chip electrical sensor network.


Small Science ◽  
2021 ◽  
pp. 2100002
Author(s):  
Tomohito Sekine ◽  
Yi-Fei Wang ◽  
Jinseo Hong ◽  
Yasunori Takeda ◽  
Reo Miura ◽  
...  

2013 ◽  
Vol 4 (6) ◽  
pp. 597-604 ◽  
Author(s):  
Yuji Hidaka ◽  
Shigeru Shimamoto

AbstractDisulfide-containing proteins are ideal models for studies of protein folding as the folding intermediates can be observed, trapped, and separated by HPLC during the folding reaction. However, regulating or analyzing the structures of folding intermediates of peptides and proteins continues to be a difficult problem. Recently, the development of several techniques in peptide chemistry and biotechnology has resulted in the availability of some powerful tools for studying protein folding in the context of the structural analysis of native, mutant proteins, and folding intermediates. In this review, recent developments in the field of disulfide-coupled peptide and protein folding are discussed, from the viewpoint of chemical and biotechnological methods, such as analytical methods for the detection of disulfide pairings, chemical methods for disulfide bond formation between the defined Cys residues, and applications of diselenide bonds for the regulation of disulfide-coupled peptide and protein folding.


Surgery ◽  
2021 ◽  
Author(s):  
Brendan P. Lovasik ◽  
Katherine T. Fay ◽  
Ankit Patel ◽  
Jamil Stetler ◽  
Dominic Papandria ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Giansimone Perrino ◽  
Sara Napolitano ◽  
Francesca Galdi ◽  
Antonella La Regina ◽  
Davide Fiore ◽  
...  

AbstractThe cell cycle is the process by which eukaryotic cells replicate. Yeast cells cycle asynchronously with each cell in the population budding at a different time. Although there are several experimental approaches to synchronise cells, these usually work only in the short-term. Here, we build a cyber-genetic system to achieve long-term synchronisation of the cell population, by interfacing genetically modified yeast cells with a computer by means of microfluidics to dynamically change medium, and a microscope to estimate cell cycle phases of individual cells. The computer implements a controller algorithm to decide when, and for how long, to change the growth medium to synchronise the cell-cycle across the population. Our work builds upon solid theoretical foundations provided by Control Engineering. In addition to providing an avenue for yeast cell cycle synchronisation, our work shows that control engineering can be used to automatically steer complex biological processes towards desired behaviours similarly to what is currently done with robots and autonomous vehicles.


Sign in / Sign up

Export Citation Format

Share Document